scholarly journals Carbonate Platform Reef-Shoal Reservoir Architecture Study and Characteristic Evaluation: A Case of S Field in Turkmenistan

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 226
Author(s):  
Hao Wang ◽  
Qiumei Zhou ◽  
Wen Zhou ◽  
Yinde Zhang ◽  
Jianhua He

Carbonate sediments are susceptible to many factors, such as paleostructure, diagenesis, and strong microbial alteration; as such, their sedimentary architecture still calls for further research. In this study, the reef and shoal bodies in the XVm and XVp layers of the Middle–Upper Jurassic Karlov-Oxfordian in the S gas field were used as the object, and the architecture of the reef-shoal facies was studied. Based on the idea of “vertical grading and horizontal boundary”, the interface characteristics of the 6th to 4th levels of reef-shoal bodies in the study area were summarized, as were four ways to determine the boundaries of reef-shoal bodies. Based on the dense well network, we quantitatively described the scale of each small layer of single reef shoal body through the point-line-surface method and established a geological database of the reef shoal bodies in the study area. In addition, we established the width and thickness of the reef shoal body and the empirical formula for relationships. The study of morphological characteristics of reef-shoal bodies and the degree of overlap revealed six architecture models of reef-shoal bodies. The vertical and lateral superimposed reefs were obtained by evaluating the reservoir space, pore throat characteristics, and physical property characteristics corresponding to various architecture models. The vertical and lateral superimposed shoals corresponded to large reservoir thicknesses. The petrophysical properties were good, and we concluded that the reef-shoal superimposed area was a sweet spot for reservoir development. We applied the research results of reef-shoal architecture reservoir characteristics to gas field development, and therefore improved well pattern deployment in the reef-shoal superimposed area. By comparing the test results of newly deployed horizontal wells with adjacent vertical wells, we confirmed that the selection of horizontal wells was better for gas field development. This study on the architecture of reef-shoal facies could guide the study of carbonate rock architecture.

2021 ◽  
Vol 10 ◽  
pp. 17-32
Author(s):  
Guido Fava ◽  
Việt Anh Đinh

The most advanced technique to evaluate different solutions proposed for a field development plan consists of building a numerical model to simulate the production performance of each alternative. Fields covering hundreds of square kilometres frequently require a large number of wells. There are studies and software concerning optimal planning of vertical wells for the development of a field. However, only few studies cover planning of a large number of horizontal wells seeking full population on a regular pattern. One of the criteria for horizontal well planning is selecting the well positions that have the best reservoir properties and certain standoffs from oil/water contact. The wells are then ranked according to their performances. Other criteria include the geometry and spacing of the wells. Placing hundreds of well individually according to these criteria is highly time consuming and can become impossible under time restraints. A method for planning a large number of horizontal wells in a regular pattern in a simulation model significantly reduces the time required for a reservoir production forecast using simulation software. The proposed method is implemented by a computer script and takes into account not only the aforementioned criteria, but also new well requirements concerning existing wells, development area boundaries, and reservoir geological structure features. Some of the conclusions drawn from a study on this method are (1) the new method saves a significant amount of working hours and avoids human errors, especially when many development scenarios need to be considered; (2) a large reservoir with hundreds of wells may have infinite possible solutions, and this approach has the aim of giving the most significant one; and (3) a horizontal well planning module would be a useful tool for commercial simulation software to ease engineers' tasks.


1989 ◽  
Author(s):  
G.C.M.R. Celier ◽  
P. Jouault ◽  
O.A.M.C. de Montigny

2021 ◽  
Author(s):  
Marat Rafailevich Dulkarnaev ◽  
Yuri Alexeyevich Kotenev ◽  
Shamil Khanifovich Sultanov ◽  
Alexander Viacheslavovich Chibisov ◽  
Daria Yurievna Chudinova ◽  
...  

In pursuit of efficient oil and gas field development, including hard-to-recover reserves, the key objective is to develop and provide the rationale for oil recovery improvement recommendations. This paper presents the results of the use of the workflow process for optimized field development at two field clusters of the Yuzhno-Vyintoiskoye field using geological and reservoir modelling and dynamic marker-based flow production surveillance in producing horizontal wells. The target reservoir of the Yuzhno-Vyntoiskoye deposit is represented by a series of wedge-shaped Neocomian sandstones. Sand bodies typically have a complex geological structure, lateral continuity and a complex distribution of reservoir rocks. Reservoir beds are characterised by low thickness and permeability. The pay zone of the section is a highly heterogeneous formation, which is manifested through vertical variability of the lithological type of reservoir rocks, lithological substitutions, and the high clay content of reservoirs. The target reservoir of the Yuzhno-Vyintoiskoye field is marked by an extensive water-oil zone with highly variable water saturation. According to paleogeographic data, the reservoir was formed in shallow marine settings. Sand deposits are represented by regressive cyclites that are typical for the progressing coastal shallow water (Dulkarnaev et al., 2020). Currently, the reservoir is in production increase cycle. That is why an integrated approach is used in this work to provide a further rationale and creation of the starting points of the reservoir pressure maintenance system impact at new drilling fields to improve oil recovery and secure sustainable oil production and the reserve development rate under high uncertainty.


2021 ◽  
Author(s):  
Arsenii Stanislavovich Posdyshev ◽  
Pavel Vladimirovich Shelyakin ◽  
Nurislam Maratovich Shaikhutdinov ◽  
Aleksey Alekseevich Popov ◽  
Maria Dmitrievna Logacheva ◽  
...  

Abstract The purpose of this work is to adapt and apply Next Generation Sequencing methods in oil and gas well field studies. Relatively recent NGS methods provide a description of a geological formation by analyzing millions of DNA sequences and represent an entirely new way to obtain information about oil and gas reservoirs and the composition of their fluids, which could significantly change the approach to exploration and field development. We present the results of pilot work to determine the inflow profile in a horizontal well based on DNA markers. The technology is based on the comparison of bacterial DNA from drill cuttings obtained while drilling with DNA from microorganisms of fluids obtained during production at the wellhead. Because of their high selectivity, individual microbes live only under certain conditions (salinity, oil saturation, temperature) and can be used as unique natural biomarkers. The comparison of DNA samples of drilling cutting and produced fluid allows for identification of the segment of the horizontal well from which the main flow comes, as well as identifying the type of incoming fluid (water, oil, gas) without stopping the operation process and without conducting expensive downhole operations. As a result of these studies, the microbial communities of the oil-bearing sands and formation fluids of the Cretaceous deposits (group BS) in Western Siberia were identified, and the relative numerical ratio of microorganisms in the formations was determined. It was shown that the microbiome diversity changes with depth, and depends on the lithological composition, and sequencing data obtained from cuttings samples correlate with data from wellhead samples of produced fluid. Thus, the practical applicability of DNA sequencing for solving field problems in oil and gas field development, in particular for determining the inflow profile in horizontal wells, was confirmed.


2016 ◽  
Vol 53 (2) ◽  
pp. 93-114
Author(s):  
Jesús Pinto ◽  
John Warme

We interpret a discrete, anomalous ~10-m-thick interval of the shallow-marine Middle to Late Devonian Valentine Member of the Sultan Formation at Frenchman Mountain, southern Nevada, to be a seismite, and that it was generated by the Alamo Impact Event. A suite of deformation structures characterize this unique interval of peritidal carbonate facies at the top of the Valentine Member; no other similar intervals have been discovered in the carbonate beds on Frenchman Mountain or in equivalent Devonian beds exposed in ranges of southern Nevada. The disrupted band extends for 5 km along the Mountain, and onto the adjoining Sunrise Mountain fault block for an additional 4+km. The interval displays a range of brittle, ductile and fluidized structures, and is divided into four informal bed-parallel units based on discrete deformation style and internal features that carry laterally across the study area. Their development is interpreted as the result of intrastratal compressional and contractional forces imposed upon the unconsolidated to fully cemented near-surface carbonate sediments at the top of the Valentine Member. The result is an assemblage of fractured, faulted, and brecciated beds, some of which were dilated, fluidized and injected to form new and complex matrix bands between beds. We interpret that the interval is an unusually thick and well displayed seismite. Because the Sultan Formation correlates northward to the Frasnian (lower Upper Devonian) carbonate rocks of the Guilmette Formation, and the Guilmette contains much thicker and more proximal exposures of the Alamo Impact Breccia, including seismites, we interpret the Frenchman Mountain seismite to be a far-field product of the Alamo Impact Event. Accompanying ground motion and deformation of the inner reaches of the Devonian carbonate platform may have resulted in a fall of relative sea level and abrupt shift to a salt-pan paleoenvironment exhibited by the post-event basal beds of the directly overlying Crystal Pass Member.


2021 ◽  
Author(s):  
Vinicius Gasparetto ◽  
Thierry Hernalsteens ◽  
Joao Francisco Fleck Heck Britto ◽  
Joab Flavio Araujo Leao ◽  
Thiago Duarte Fonseca Dos Santos ◽  
...  

Abstract Buzios is a super-giant ultra-deep-water pre-salt oil and gas field located in the Santos Basin off Brazil's Southeastern coast. There are four production systems already installed in the field. Designed to use flexible pipes to tie back the production and injection wells to the FPSOs (Floating Production Storage and Offloading), these systems have taken advantage from several lessons learned in the previous projects installed by Petrobras in Santos Basin pre-salt areas since 2010. This knowledge, combined with advances in flexible pipe technology, use of long-term contracts and early engagement with suppliers, made it possible to optimize the field development, minimizing the risks and reducing the capital expenditure (CAPEX) initially planned. This paper presents the first four Buzios subsea system developments, highlighting some of the technological achievements applied in the field, as the first wide application of 8" Internal Diameter (ID) flexible production pipes for ultra-deep water, leading to faster ramp-ups and higher production flowrates. It describes how the supply chain strategy provided flexibility to cover the remaining project uncertainties, and reports the optimizations carried out in flexible riser systems and subsea layouts. The flexible risers, usually installed in lazy wave configurations at such water depths, were optimized reducing the total buoyancy necessary. For water injection and service lines, the buoyancy modules were completely removed, and thus the lines were installed in a free-hanging configuration. Riser configuration optimizations promoted a drop of around 25% on total riser CAPEX and allowed the riser anchor position to be placed closer to the floating production unit, promoting opportunities for reducing the subsea tieback lengths. Standardization of pipe specifications and the riser configurations allowed the projects to exchange the lines, increasing flexibility and avoiding riser interference in a scenario with multiple suppliers. Furthermore, Buzios was the first ultra-deep-water project to install a flexible line, riser, and flowline, with fully Controlled Annulus Solution (CAS). This system, developed by TechnipFMC, allows pipe integrity management from the topside, which reduces subsea inspections. As an outcome of the technological improvements and the optimizations applied to the Buzios subsea system, a vast reduction in subsea CAPEX it was achieved, with a swift production ramp-up.


2021 ◽  
Vol 3 (8) ◽  
pp. 70-72
Author(s):  
Jianbo Hu ◽  
◽  
Yifeng Di ◽  
Qisheng Tang ◽  
Ren Wen ◽  
...  

In recent years, China has made certain achievements in shallow sea petroleum geological exploration and development, but the exploration of deep water areas is still in the initial stage, and the water depth in the South China Sea is generally 500 to 2000 meters, which is a deep water operation area. Although China has made some progress in the field of deep-water development of petroleum technology research, but compared with the international advanced countries in marine science and technology, there is a large gap, in the international competition is at a disadvantage, marine research technology and equipment is relatively backward, deep-sea resources exploration and development capacity is insufficient, high-end technology to foreign dependence. In order to better develop China's deep-sea oil and gas resources, it is necessary to strengthen the development of drilling and completion technology in the oil industry drilling engineering. This paper briefly describes the research overview, technical difficulties, design principles and main contents of the completion technology in deepwater drilling and completion engineering. It is expected to have some significance for the development of deepwater oil and gas fields in China.


Sign in / Sign up

Export Citation Format

Share Document