scholarly journals Solar-Driven Simultaneous Electrochemical CO2 Reduction and Water Oxidation Using Perovskite Solar Cells

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 270
Author(s):  
Jaehoon Chung ◽  
Nam Joong Jeon ◽  
Jun Hong Noh

The utilization of solar energy into electrochemical reduction systems has received considerable attention. Most of these attempts have been conducted in a single electrolyte without a membrane. Here, we report the system combined by the electrochemical CO2 reduction on the Au dendrite electrode and the water oxidation on the Co-Pi electrode with a Nafion membrane. An efficient reduction of CO2 to CO in the cathode using the proton from water oxidation in the anode is conducted using perovskite solar cells under 1 sun condition. The sustainable reaction condition is secured by balancing each reaction rate based on products analysis. Through this system, we collect reduction products such as CO and H2 and oxidation product, O2, separately. Employing separation of each electrode system and series-connected perovskite solar cells, we achieve 8% of solar to fuel efficiency with 85% of CO selectivity under 1 sun illumination.

2021 ◽  
Author(s):  
Karla Banjac ◽  
Thanh Hai Phan ◽  
Fernando P. Cometto ◽  
Patrick Alexa ◽  
Yunchang Liang ◽  
...  

The electrochemical reduction of CO2 (CO2RR) into multicarbon compounds is a promising pathway towards renewable chemicals. Structure-product selectivity studies highlight that copper (100) facets favour C2+ product formation. However, the atomic processes leading to the formation of (100)-rich Cu cubes remains elusive. Herein, we use Cu and graphene-protected Cu surfaces to reveal the differences in structure and composition of common Cu-based electrocatalysts, from nano to micrometer scales. We show that stripping/electrodeposition cycles lead to thermodynamically controlled growth of Cu2O micro/nanocubes, while multi-layered Cu nanocuboids form universally during CO2RR upon polarization-driven re-organization of Cu0 atoms. A synergy of electrochemical characterization by scanning tunnelling microscopy (EC-STM), operando EC-Raman and quasi-operando X-Ray Photoemission spectroscopy (XPS) allows us to shed light on the role of oxygen on the dynamic interfacial processes of Cu, and to demonstrate that chloride is not needed for the stabilization of cubic Cu nanostructures.


2021 ◽  
Author(s):  
Shima Alinejad ◽  
Jonathan Quinson ◽  
Yao Li ◽  
Ying Kong ◽  
Sven Reichenberger ◽  
...  

The lack of a robust and standardized experimental test bed to investigate the performance of catalyst materials for the electrochemical CO2 reduction reaction (ECO2RR) is one of the major challenges in this field of research. To best reproduce and mimic commercially relevant conditions for catalyst screening and testing, gas diffusion electrode (GDE) setups attract a rising attention as an alternative to conventional aqueous-based setups such as the H-cell configuration. In particular a zero-gap design shows promising features for upscaling to the commercial scale. In this study, we develop further our recently introduced zero-gap GDE setup for the CO2RR using an Au electrocatalyst as model system and identify/report the key experimental parameters to control in the catalyst layer preparation in order to optimize the activity and selectivity of the catalyst.


1982 ◽  
Vol 152 (2) ◽  
pp. 840-847
Author(s):  
J A Romesser ◽  
R S Wolfe

The stimulation of carbon dioxide reduction to methane by addition of 2-(methylthio)ethanesulfonate (CH3-S-CoM) to cell extracts of Methanobacterium thermoautotrophicum was investigated. Similar stimulation of CO2 reduction by CH3-S-CoM was found for cell extracts of Methanobacterium bryantii and Methanospirillum hungatei. The CH3-S-CoM requirement could be met by the methanogenic precursors formaldehyde, serine, or pyruvate, or by 2-(ethylthio)ethanesulfonate (CH3CH2-S-CoM), but not by other coenzyme M derivatives. Efficient reduction of CO2 to CH4 was favored by low concentrations of CH3-S-CoM and high concentrations of CO2. Sulfhydryl compounds were identified as effective inhibitors of CO2 reduction. Both an allosteric model and a free-radical model for the mechanism of CO2 activation and reduction are discussed.


Author(s):  
Jeffrey Derrick ◽  
Matthias Loipersberger ◽  
Diana Iovan ◽  
Peter T. Smith ◽  
Khetpakorn Chakarawet ◽  
...  

Biological and heterogenous catalysts for electrochemical CO2 reduction often exhibit a high degree of electronic delocalization that serves to minimize overpotential and maximize selectivity over hydrogen evolution. Here, we report a molecular iron(II) complex that achieves a similar feat as a result of strong metal–ligand exchange coupling. This interaction promotes an open-shell singlet electronic structure that drives the electrochemical reduction of CO2 to CO with over 90% selectivity and turnover frequencies of 100,000 s−1 at low overpotentials, with no degradation over 20 hours. The decrease in the thermodynamic barrier engendered by this strong metal–ligand exchange coupling enables homogeneous CO2 reduction catalysis in water without compromising reaction selectivity.


Author(s):  
Nael Yasri ◽  
Tareq Al-Attas ◽  
Jinguang Hu ◽  
Md Golam Kibria

Developing catalysts that exhibit high efficiencies for the electrochemical CO2 reduction reaction (CO2RR) in aqueous media is vital in both aspects of the healthier environment and for the practical implementation...


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2029
Author(s):  
Muhammad Usman ◽  
Muhammad Humayun ◽  
Mustapha D. Garba ◽  
Latif Ullah ◽  
Zonish Zeb ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) provides a promising approach to curbing harmful emissions contributing to global warming. However, several challenges hinder the commercialization of this technology, including high overpotentials, electrode instability, and low Faradic efficiencies of desirable products. Several materials have been developed to overcome these challenges. This mini-review discusses the recent performance of various cobalt (Co) electrocatalysts, including Co-single atom, Co-multi metals, Co-complexes, Co-based metal–organic frameworks (MOFs), Co-based covalent organic frameworks (COFs), Co-nitrides, and Co-oxides. These materials are reviewed with respect to their stability of facilitating CO2 conversion to valuable products, and a summary of the current literature is highlighted, along with future perspectives for the development of efficient CO2RR.


2017 ◽  
Vol 5 (32) ◽  
pp. 8059-8070 ◽  
Author(s):  
Christian Mark Pelicano ◽  
Hisao Yanagi

A facile and energy saving method to produce high quality ZnO nanostructures in ultrapure water for efficient perovskite solar cells.


2020 ◽  
Author(s):  
Jeffrey Derrick ◽  
Matthias Loipersberger ◽  
Diana Iovan ◽  
Peter T. Smith ◽  
Khetpakorn Chakarawet ◽  
...  

Biological and heterogenous catalysts for electrochemical CO2 reduction often exhibit a high degree of electronic delocalization that serves to minimize overpotential and maximize selectivity over hydrogen evolution. Here, we report a molecular iron(II) complex that achieves a similar feat as a result of strong metal–ligand exchange coupling. This interaction promotes an open-shell singlet electronic structure that drives the electrochemical reduction of CO2 to CO with over 90% selectivity and turnover frequencies of 100,000 s−1 at low overpotentials, with no degradation over 20 hours. The decrease in the thermodynamic barrier engendered by this strong metal–ligand exchange coupling enables homogeneous CO2 reduction catalysis in water without compromising reaction selectivity.


Sign in / Sign up

Export Citation Format

Share Document