scholarly journals A Multi-Point Geostatistical Seismic Inversion Method Based on Local Probability Updating of Lithofacies

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 299
Author(s):  
Zhihong Wang ◽  
Tiansheng Chen ◽  
Xun Hu ◽  
Lixin Wang ◽  
Yanshu Yin

In order to solve the problem that elastic parameter constraints are not taken into account in local lithofacies updating in multi-point geostatistical inversion, a new multi-point geostatistical inversion method with local facies updating under seismic elastic constraints is proposed. The main improvement of the method is that the probability of multi-point facies modeling is combined with the facies probability reflected by the optimal elastic parameters retained from the previous inversion to predict and update the current lithofacies model. Constrained by the current lithofacies model, the elastic parameters were obtained via direct sampling based on the statistical relationship between the lithofacies and the elastic parameters. Forward simulation records were generated via convolution and were compared with the actual seismic records to obtain the optimal lithofacies and elastic parameters. The inversion method adopts the internal and external double cycle iteration mechanism, and the internal cycle updates and inverts the local lithofacies. The outer cycle determines whether the correlation between the entire seismic record and the actual seismic record meets the given conditions, and the cycle iterates until the given conditions are met in order to achieve seismic inversion prediction. The theoretical model of the Stanford Center for Reservoir Forecasting and the practical model of the Xinchang gas field in western China were used to test the new method. The results show that the correlation between the synthetic seismic records and the actual seismic records is the best, and the lithofacies matching degree of the inversion is the highest. The results of the conventional multi-point geostatistical inversion are the next best, and the results of the two-point geostatistical inversion are the worst. The results show that the reservoir parameters obtained using the local probability updating of lithofacies method are closer to the actual reservoir parameters. This method is worth popularizing in practical exploration and development.

2020 ◽  
Vol 25 (1) ◽  
pp. 89-100
Author(s):  
Lin Zhou ◽  
Jianping Liao ◽  
Jingye Li ◽  
Xiaohong Chen ◽  
Tianchun Yang ◽  
...  

Accurately inverting changes in the reservoir elastic parameters that are caused by oil and gas exploitation is of great importance in accurately describing reservoir dynamics and enhancing recovery. Previously numerous time-lapse seismic inversion methods based on the approximate formulas of exact Zoeppritz equations or wave equations have been used to estimate these changes. However the low accuracy of calculations using approximate formulas and the significant calculation effort for the wave equations seriously limits the field application of these methods. However, these limitations can be overcome by using exact Zoeppritz equations. Therefore, we study the time-lapse seismic difference inversion method using the exact Zoeppritz equations. Firstly, the forward equation of time-lapse seismic difference data is derived based on the exact Zoeppritz equations. Secondly, the objective function based on Bayesian inversion theory is constructed using this equation, with the changes in elastic parameters assumed to obey a Gaussian distribution. In order to capture the sharp time-lapse changes of elastic parameters and further enhance the resolution of the inversion results, the blockiness constraint, which follows the differentiable Laplace distribution, is added to the prior Gaussian background model. All examples of its application show that the proposed method can obtain stable and reasonable P- and S-wave velocities and density changes from the difference data. The accuracy of estimation is higher than for existing methods, which verifies the effectiveness and feasibility of the new method. It can provide high-quality seismic inversion results for dynamic detailed reservoir description and well location during development.


2020 ◽  
Vol 17 (3) ◽  
pp. 411-428
Author(s):  
Shuang Xiao ◽  
Jing Ba ◽  
Qiang Guo ◽  
J M Carcione ◽  
Lin Zhang ◽  
...  

Abstract Seismic pre-stack AVA inversion using the Zoeppritz equation and its approximations as a forward engine yields P- and S-wave velocities and density. Due to the presence of seismic noise and other factors, the solution to seismic inversion is generally ill-posed and it is necessary to add constraints to regularize the algorithm. Moreover, since pre-stack inversion is a nonlinear problem, linearized optimization algorithms may fall into false local minima. The simulated annealing (SA) algorithm, on the other hand, is capable of finding the global optimal solution regardless of the initial model. However, when applied to multi-parameter pre-stack inversion, standard SA suffers from instability. Thus, a nonlinear pre-stack inversion method is proposed based on lithology constraints. Specifically, correlations among the elastic parameters are introduced to establish constraints based on a Bayesian framework, with special intention of mitigating the ill-posedness of the inversion problem as well as addressing the lithological characteristics of the formations. In particular, to improve the stability, a multivariate Gaussian distribution of elastic parameters is incorporated into the model updating the SA algorithm. We apply the algorithm to synthetic and field seismic data, indicating that the proposed method has a good resolution and stability performance.


2014 ◽  
Vol 1030-1032 ◽  
pp. 724-727
Author(s):  
Chun Lei Li ◽  
Wen Qi Zhang ◽  
Zhao Hui Xia ◽  
Ming Zhang ◽  
Liang Chao Qu ◽  
...  

Seismic inversion methods include constrained sparse pulse inversion and band limit inversion, etc. Although resolution of the seismic inversion results is higher than seismic data, it does not identify thin interbedding sand body and confirm the development of reservoirs. In this paper, in A block of Indonesia adopted geostatistical inversion in reservoir prediction, which is a method of seismic inversion combining geological statistics simulation and seismic inversion. This inversion method can establish various 3D geological model with the same probability of rock properties and lithology and it obey all seismic, logging and geological data. Using statistical regularity and seismic inversion technique we can obtain more fine reservoir model and finally reach the purpose of identification of single thin sand layer.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. R1-R10 ◽  
Author(s):  
Jinyue Liu ◽  
Yanghua Wang

Seismic inversion of amplitude variation with offset (AVO) plays a key role in seismic interpretation and reservoir characterization. The AVO inversion should be a simultaneous inversion that inverts for three elastic parameters simultaneously: the P-wave impedance, S-wave impedance, and density. Using only seismic P-wave reflection data with a limited source-receiver offset range, the AVO simultaneous inversion can obtain two elastic parameters reliably, but it is difficult to invert for the third parameter, usually the density term. To address this difficulty in the AVO simultaneous inversion, we used a subspace inversion method in which we partitioned the elastic parameters into different subspaces. We parameterized each single elastic parameter with a truncated Fourier series and inverted for the Fourier coefficients. Because the Fourier coefficients of different wavenumber components have different sensitivities, we grouped the Fourier coefficients of low-, medium-, and high-wavenumber components into different subspaces. We further assigned different damping factors to the Hessian matrix corresponding to different wavenumber components within each subspace. This inversion scheme is referred to as a multidamped subspace method. Synthetic and field seismic data examples confirmed that the AVO simultaneous inversion with this multidamped subspace method is capable of producing reliable estimation of the three elastic parameters simultaneously.


2021 ◽  
Vol 11 (24) ◽  
pp. 12015
Author(s):  
Wenliang Nie ◽  
Fei Xiang ◽  
Bo Li ◽  
Xiaotao Wen ◽  
Xiangfei Nie

Using seismic data, logging information, geological interpretation data, and petrophysical data, it is possible to estimate the stratigraphic texture and elastic parameters of a study area via a seismic inversion. As such, a seismic inversion is an indispensable tool in the field of oil and gas exploration and development. However, due to unknown natural factors, seismic inversions are often ill-conditioned problems. One way to work around this unknowable information is to determine the solution to the seismic inversion using regularization methods after adding further a priori constraints. In this study, the nonconvex L1−2 regularization method is innovatively applied to the three-parameter prestack amplitude variation angle (AVA) inversion. A forward model is first derived based on the Fatti approximate formula and then low-frequency models for P impedance, S impedance, and density are established using logging and horizon data. In the Bayesian inversion framework, we derive the objective function of the prestack AVA inversion. To further improve the accuracy and stability of the inversion results, we remove the correlations between the elastic parameters that act as initial constraints in the inversion. Then, the objective function is solved by the nonconvex L1−2 regularization method. Finally, we validate our inversion method by applying it to synthetic and observational data sets. The results show that our nonconvex L1−2 regularization seismic inversion method yields results that are highly accurate, laterally continuous, and can be used to identify and locate reservoir formation boundaries. Overall, our method will be a useful tool in future work focused on predicting the location of reservoirs.


2021 ◽  
Vol 225 (2) ◽  
pp. 1020-1031
Author(s):  
Huachen Yang ◽  
Jianzhong Zhang ◽  
Kai Ren ◽  
Changbo Wang

SUMMARY A non-iterative first-arrival traveltime inversion method (NFTI) is proposed for building smooth velocity models using seismic diving waves observed on irregular surface. The new ray and traveltime equations of diving waves propagating in smooth media with undulant observation surface are deduced. According to the proposed ray and traveltime equations, an analytical formula for determining the location of the diving-wave turning points is then derived. Taking the influence of rough topography on first-arrival traveltimes into account, the new equations for calculating the velocities at turning points are established. Based on these equations, a method is proposed to construct subsurface velocity models from the observation surface downward to the bottom using the first-arrival traveltimes in common offset gathers. Tests on smooth velocity models with rugged topography verify the validity of the established equations, and the superiority of the proposed NFTI. The limitation of the proposed method is shown by an abruptly-varying velocity model example. Finally, the NFTI is applied to solve the static correction problem of the field seismic data acquired in a mountain area in the western China. The results confirm the effectivity of the proposed NFTI.


2019 ◽  
Vol 38 (6) ◽  
pp. 474-479
Author(s):  
Mohamed G. El-Behiry ◽  
Said M. Dahroug ◽  
Mohamed Elattar

Seismic reservoir characterization becomes challenging when reservoir thickness goes beyond the limits of seismic resolution. Geostatistical inversion techniques are being considered to overcome the resolution limitations of conventional inversion methods and to provide an intuitive understanding of subsurface uncertainty. Geostatistical inversion was applied on a highly compartmentalized area of Sapphire gas field, offshore Nile Delta, Egypt, with the aim of understanding the distribution of thin sands and their impact on reservoir connectivity. The integration of high-resolution well data with seismic partial-angle-stack volumes into geostatistical inversion has resulted in multiple elastic property realizations at the desired resolution. The multitude of inverted elastic properties are analyzed to improve reservoir characterization and reflect the inversion nonuniqueness. These property realizations are then classified into facies probability cubes and ranked based on pay sand volumes to quantify the volumetric uncertainty in static reservoir modeling. Stochastic connectivity analysis was also applied on facies models to assess the possible connected volumes. Sand connectivity analysis showed that the connected pay sand volume derived from the posterior mean of property realizations, which is analogous to deterministic inversion, is much smaller than the volumes generated by any high-frequency realization. This observation supports the role of thin interbed reservoirs in facilitating connectivity between the main sand units.


2014 ◽  
Vol 672-674 ◽  
pp. 1964-1967
Author(s):  
Jun Qiu Wang ◽  
Jun Lin ◽  
Xiang Bo Gong

Vibroseis obtained the seismic record by cross-correlation detection calculation. compared with dynamite source, cross-correlation detection can suppress random noise, but produce more correlation noise. This paper studies Radon transform to remove correlation noise produced by electromagnetic drive vibroseis and impact rammer. From the results of processing field seismic records, we can see that Radon transform can remove correlation noise by vibroseis, the SNR of vibroseis seismic data is effectively improved.


2021 ◽  
Vol 40 (4) ◽  
pp. 267-276
Author(s):  
Peter Mesdag ◽  
Leonardo Quevedo ◽  
Cătălin Tănase

Exploration and development of unconventional reservoirs, where fractures and in-situ stresses play a key role, call for improved characterization workflows. Here, we expand on a previously proposed method that makes use of standard isotropic modeling and inversion techniques in anisotropic media. Based on approximations for PP-wave reflection coefficients in orthorhombic media, we build a set of transforms that map the isotropic elastic parameters used in prestack inversion into effective anisotropic elastic parameters. When used in isotropic forward modeling and inversion, these effective parameters accurately mimic the anisotropic reflectivity behavior of the seismic data, thus closing the loop between well-log data and seismic inversion results in the anisotropic case. We show that modeling and inversion of orthorhombic anisotropic media can be achieved by superimposing effective elastic parameters describing the behavior of a horizontally stratified medium and a set of parallel vertical fractures. The process of sequential forward modeling and postinversion analysis is exemplified using synthetic data.


Sign in / Sign up

Export Citation Format

Share Document