scholarly journals Non-Isolated Interleaved Hybrid Boost Converter for Renewable Energy Applications

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 610
Author(s):  
Girish Ganesan Ramanathan ◽  
Naomitsu Urasaki

DC-DC boost converters are necessary to extract power from solar panels. The output voltage from these panels is far lower than the utility voltage levels. One of the main functions of the boost converter is to provide a considerable step-up gain to interface the panel to the utility lines. There are several techniques used to boost the low panel voltage. Some of the issues faced by these topologies are a high duty ratio operation, complex design with multiple active switches and discontinuous input current that affects the power drawn from the panel. This paper presents a boost converter topology that combines the advantages of an interleaved structure, a voltage lift capacitor and a passive voltage multiplier network. A mathematical analysis of the proposed converter during its various modes of operation is presented. A 100 W prototype of the proposed converter is designed and tested. The prototype is controlled by a PIC16F18455 microcontroller. The converter is capable of achieving a gain of 10 without operating at extremely high duty ratios. The voltage stress of the switch is far lower than the maximum output voltage.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8091
Author(s):  
Girish Ganesan Ramanathan ◽  
Naomitsu Urasaki

The increase in global energy demand has led to increased research in harvesting solar energy. Solar energy is widely used in homes, electric vehicles and is a great solution to power remote areas. DC–DC converters are essential in extracting power from solar panels. One of the main problems in designing converters for solar energy applications is boosting the low output voltage of the solar panel to meaningful levels. While there are several topologies to achieve high gain, some of the problems faced by them are the extreme duty ratio, complex design and discontinuous input current. This paper presents a novel topology that uses an interleaved input, a voltage lift capacitor and a hybrid switched capacitor network to achieve high gain without an extreme duty ratio or bulky magnetics. The proposed converter is controlled using a microcontroller which regulates the output voltage. The voltage lift capacitor and the switched capacitor network enhances the voltage gain over a conventional boost converter without an extreme duty ratio. The analysis and design of the proposed converter are presented and verified with a 100 W prototype. The results show that the converter provides a gain of 10, at a duty ratio of 30%, while delivering the designed output power with considerably high efficiency.


2020 ◽  
Vol 10 (4) ◽  
pp. 39
Author(s):  
Maziar Rastmanesh ◽  
Ezz El-Masry ◽  
Kamal El-Sankary

Photo-voltaic (PV) power harvest can have decent efficiency when dealing with high power. When operating with a DC–DC boost converter during the low-power harvest, its efficiency and output voltage are degraded due to excessive losses in the converter components. The objective of this paper is to present a systematic approach to designing an efficient low-power photo-voltaic harvesting topology with an improved efficiency and output voltage. The proposed topology uses a boost converter with and extra inductor in recycled and synchro-recycled techniques in continuous current mode (CCM). By exploiting the non-linearity of the PV cell, it reduces the power loss and using the current stored in the second inductor, it enhances the output voltage and output power simultaneously. Further, by utilizing the Metal Oxide Silicon Field Effect Transistor’s (MOSFET) body diode as a switch, it maintains a minimum hardware, and introduces a negligible impact on the reliability. The test results of the proposed boost converters show that it achieves a decent power and output voltage. Theoretical and experimental results of the proposed topologies with a tested prototype are presented along with a strategy to maximize power and voltage conversion efficiencies and output voltage.


2017 ◽  
Vol 7 (1.2) ◽  
pp. 47
Author(s):  
N K Rayaguru ◽  
N. Poornachandra Rao ◽  
K. Navin Sam ◽  
Sunil Kumar Thakur

In this paper, state space model of the complete Wind Energy Electric Conversion System (WEECS) comprising of wind turbine, Permanent Magnet Synchronous Generator (PMSG), uncontrolled rectifier, DC-DC boost converter, and SPWM inverter feeding a standalone load has been formulated. The derived state space model is then simulated using Matlab/Simulink to test the model. As the standalone three phase load connected to the inverter demands constant output voltage irrespective of intermittent wind pattern, a PI controller is used to control the duty ratio of DC-DC boost converter to maintain constant output voltage at the inverter end.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Faqiang Wang ◽  
Jing Li ◽  
Xikui Ma

Negative-output KY Boost converter, which can obtain the negative output voltage and could be driven easily, is a good topology to overcome traditional Boost and Buck-Boost converters and it is believed that this converter will be widely used in engineering applications in the future. In this study, by using the averaging method and geometrical technique, the average and small signal model of the negative-output KY Boost converter are established. The DC equilibrium point and transfer functions of the system are derived and analyzed. Finally, the effectiveness of the established model and the correctness of the theoretical analysis are confirmed by the circuit experiment.


2021 ◽  
Vol 2 (2) ◽  
pp. 162-167
Author(s):  
Haris Masrepol ◽  
Muldi Yuhendri

Solar panels are a renewable energy power plant that uses sunlight as its main energy source. The power generated by solar panels are determined by the size of the solar panels, solar radiation and temperature. The power of the solar panels is also determined by the output voltage of the solar panels. To get the maximum output power at any time, it is necessary to adjust the output voltage of the solar panel. This study proposes controlling the maximum output power of solar panels, also known as maximum power point tracking (MPPT) by adjusting the output voltage of the solar panels using a buck converter. The buck converter output voltage regulation at the maximum power point of the solar panel is designed with the Perturbation and Observation (PO) algorithm which is implemented using an Arduino Mega 2560. This MPPT control system is applied to 4x50 Watt-Peak (WP) solar panels which are connected in parallel. The experimental results show that the proposed MPPT control system with the PO algorithm has worked well as expected. This can be seen from the output power generated by the solar panels already around the maximum power point at any change in solar radiation and temperature.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1480 ◽  
Author(s):  
Javier Loranca-Coutiño ◽  
Carlos A. Villarreal-Hernandez ◽  
Jonathan C. Mayo-Maldonado ◽  
Jesús E. Valdez-Resendiz ◽  
Adolfo R. Lopez-Nuñez ◽  
...  

This work presents a power-electronics based system for renewable energy applications, the system is driven with an only one switch quadratic type boost converter, the discussed converter is based on a stack of switching stages which provide a large voltage gain, a desirable feature for fuel cell generation systems, the converters gain function is the quadratic boost-type converters; furthermore, the topology can be extended. The major benefit of the topology is that there is not a capacitor that sustains the entire output voltage, in contrast to other similar topologies in which there is a capacitor rated to the output port voltage, there is no high voltage capacitor in this system. Experimental verification is presented to confirm the system principles; experiments included a fuel cell emulator that was built and used for the experiments.


2015 ◽  
Vol 793 ◽  
pp. 280-285
Author(s):  
J.A. Soo ◽  
N.A. Rahman ◽  
J.H. Leong

This paper proposed a novel single-stage square wave buck-boost inverter (SWBBI). The proposed inverter is designed by using dual buck-boost converters. The input DC voltage of the proposed inverter can be either stepped-down or stepped-up in square output voltage waveform depending on the duty-cycle applied for each buck-boost converter. This characteristic is not found in conventional voltage source inverter where the output voltage is always lower than the input DC voltage. The proposed inverter is analyzed by a series of simulations using MATLAB/Simulink as well as experiments by using different values of duty-cycle. A conclusion about the feasibility of the proposed inverter is given by comparing the simulation and experimental results.


2014 ◽  
Vol 590 ◽  
pp. 500-505
Author(s):  
Qi Ming Wan ◽  
Don Gey Liu ◽  
Gui Xian Zhou

This paper described new working mode of Power Factor Corrector (PFC), called Boundary Continuous Mode (BCM); studied the design parameters of the critical components for the BCM-PFC in the boost topology; proposed a method and a tool for designing an L6562A-based BCM-PFC Boost Converter. The method and tool was verified on an evaluation board emulating a PFC boost converter with an 80W output power, 400Vdc output voltage and a wide range main input from 85Vac to 264Vac; and it can be easily adapted for applications with higher output power around 400W.


Author(s):  
N. Lalitha Rani and S. Ramyaka

Generally, the power generating from the Fuel cell is an electrochemical reaction between H2 and oxygen and it generates electric energy, and the by-product is water vapour. However, the output from the fuel cell systemsis very low, then it becomes necessary to connect more number of cells in series to improve the output. The proposed method electrically divides the fuel cell stack into different sections, and each stack is powered by a direct boost inverter. This paper proposes a concept of high voltage dc-dc boost converter topology for a three phase systemto a typical output voltage from the fuel cell as a stand-alone supply. The main advantage of the proposed boost inverter method include ability to deliver the operations of both boosting and inversion of the power in only one stage, compactness, and economical. The output voltage from the fuel cell is a voltage controlled method and output from the battery is a current controlled method. Analysis, and Simulation are taken from a 1kW prototype.


Sign in / Sign up

Export Citation Format

Share Document