scholarly journals A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

Energies ◽  
2015 ◽  
Vol 8 (7) ◽  
pp. 7058-7069 ◽  
Author(s):  
Taehong Sung ◽  
Sang Yoon ◽  
Kyung Kim
2020 ◽  
Author(s):  
M. T. Nitsas ◽  
I. P. Koronaki

Abstract The objective of this paper is the thermodynamic analysis of a solar powered Organic Rankine Cycle (O.R.C.) and the investigation of potential working fluids in order to select the optimum one. A dynamic model for a solar O.R.C. with a storage tank, which produces electricity is developed. The mathematical model includes all the equations that describe the operation of the solar collectors, the storage tank, the Rankine Cycle and the feedback between them. The model runs for representative days throughout the year, calculating the net produced energy as a function of the selected evaporation temperature for every suitable working fluid. Above that, the temporal variation of the systems’ temperatures, collectors’ efficiency and net produced power, for the optimum organic fluid and evaporation temperature are presented.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 428 ◽  
Author(s):  
Wang ◽  
Fu

An integrated solar combined cycle (ISCC) with a low temperature waste heat recovery system is proposed in this paper. The combined system consists of a conventional natural gas combined cycle, organic Rankine cycle and solar fields. The performance of an organic Rankine cycle subsystem as well as the overall proposed ISCC system are analyzed using organic working fluids. Besides, parameters including the pump discharge pressure, exhaust gas temperature, thermal and exergy efficiencies, unit cost of exergy for product and annual CO2-savings were considered. Results indicate that Rc318 contributes the highest exhaust gas temperature of 71.2℃, while R113 showed the lowest exhaust gas temperature of 65.89 at 800 W/m2, in the proposed ISCC system. The overall plant thermal efficiency increases rapidly with solar radiation, while the exergy efficiency appears to have a downward trend. R227ea had both the largest thermal efficiency of 58.33% and exergy efficiency of 48.09% at 800W/m2. In addition, for the organic Rankine cycle, the exergy destructions of the evaporator, turbine and condenser decreased with increasing solar radiation. The evaporator contributed the largest exergy destruction followed by the turbine, condenser and pump. Besides, according to the economic analysis, R227ea had the lowest production cost of 19.3 $/GJ.


2017 ◽  
Vol 142 ◽  
pp. 1274-1281 ◽  
Author(s):  
Jiaxin Ni ◽  
Zhi Wang ◽  
Li Zhao ◽  
Ying Zhang ◽  
Zhengtao Zhang ◽  
...  

2015 ◽  
Vol 789-790 ◽  
pp. 391-397
Author(s):  
Ratha Z. Mathkor ◽  
Brian Agnew ◽  
Mohammed A. Al-Weshahi ◽  
Saleh Etaig

The paper presents a study of a thermal assessment of an Organic Rankine Cycle (ORC) energized by heat absorbed from a parabolic trough collector (PTC) located in Derna, Libya. Both the ORC and PTC are modeled using the IPSEpro software. The simulation results are used to evaluate the system performance using energy and exergy analysis. The study showed the PTC collector was the main contributor of the energy and exergy losses within the PTC system and the evaporator within in the ORC. At this specific weather conditions, the ORC was able to produce about 3 MW electrical powers from the powered PTC heat. Moreover, exergy efficiency of the PTC was 47.7 %, the heat engine was 23.3 % and for the overall system (PTC and ORC) was 11.1 %.


Author(s):  
Bdoor Majed Ahmed ◽  
Nibal Fadel Farman Alhialy

The present work included study of the effects of weather conditions such as solar radiation and  ambient temperature on solar panels (monocrystalline 30 Watts) via proposed mathematical model, MATLAB_Simulation was used by scripts file to create a special code to solve the mathematical model , The latter is single –diode model (Five parameter) ,Where the effect of ambient temperature and solar radiation on the output of the solar panel was studied, the Newton Raphson method was used to find the  output current of the solar panel and plot P-V ,I-V curves, the performance of the PV was determined at Standard Test Condition (STC) (1000W/m2)and a comparison between theoretical and experimental results were done .The best efficiency  ranging from 0.15 to 0.16. With a particularly, error about (-0.333) for experimental power (30 Watt) comparing with theoretical power (30.1), through these results it is concluded the validity of the proposed model. This model can be used for all types of photovoltaic panels and also with larger output power.


2005 ◽  
Vol 129 (2) ◽  
pp. 253-255 ◽  
Author(s):  
Hongxing Yang ◽  
Lin Lu

The tilt and azimuth angles of a photovoltaic (PV) array affect the amount of incident solar radiation exposed on the array. This paper develops a new mathematical model for calculating the optimum tilt angles and azimuth angles for building-integrated photovoltaic (BIPV) applications in Hong Kong on yearly, seasonal, and monthly bases. The influence of PV cladding orientation on the power output of PV modules is also investigated. The correlations between the optimum tilt angle and local weather conditions or local environmental conditions are investigated. The results give reasonable solutions for the optimum tilt angles for BIPV applications for both grid-connected and stand-alone systems.


Sign in / Sign up

Export Citation Format

Share Document