scholarly journals Thermodynamic Investigation of an Integrated Solar Combined Cycle with an ORC System

Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 428 ◽  
Author(s):  
Wang ◽  
Fu

An integrated solar combined cycle (ISCC) with a low temperature waste heat recovery system is proposed in this paper. The combined system consists of a conventional natural gas combined cycle, organic Rankine cycle and solar fields. The performance of an organic Rankine cycle subsystem as well as the overall proposed ISCC system are analyzed using organic working fluids. Besides, parameters including the pump discharge pressure, exhaust gas temperature, thermal and exergy efficiencies, unit cost of exergy for product and annual CO2-savings were considered. Results indicate that Rc318 contributes the highest exhaust gas temperature of 71.2℃, while R113 showed the lowest exhaust gas temperature of 65.89 at 800 W/m2, in the proposed ISCC system. The overall plant thermal efficiency increases rapidly with solar radiation, while the exergy efficiency appears to have a downward trend. R227ea had both the largest thermal efficiency of 58.33% and exergy efficiency of 48.09% at 800W/m2. In addition, for the organic Rankine cycle, the exergy destructions of the evaporator, turbine and condenser decreased with increasing solar radiation. The evaporator contributed the largest exergy destruction followed by the turbine, condenser and pump. Besides, according to the economic analysis, R227ea had the lowest production cost of 19.3 $/GJ.

2021 ◽  
Vol 7 (3) ◽  
pp. 024-045
Author(s):  
Iniobong Gregory Frank ◽  
B. Nkoi ◽  
I. E. Douglas

In this research, Organic Rankine Cycle (ORC) is used to recover heat from exhaust gas of a four-stroke diesel engine. After retrofitting ORC to the engine, Brake power increased from 10473.91 kW to combined – cycle Brake power of 10736.00kW, thermal efficiency increased from 36.01% to combined – cycle thermal efficiency of 51.32% and Exhaust gas temperature decrease from 358oC to 120oC at the exit of the turbocharger. ORC with R12, R22, R134a and R290 as working fluids at saturation and superheated temperatures, pressures and condenser pressures at different ranges were used to compare refrigerants performance in converting low grade exhaust gas waste heat into useful work. This research presents theoretical analysis on four different refrigerants. Applying the above-mentioned refrigerants as working fluid superheated vapour temperature for R12 is 131.72oC, R134a is 129.37oC, R22 is 113.40oC and R290 is 116.95oC. ORC Power generated by turbine gives 94.98kW, 95.56kW. 130.32kW. 262.64kW respectively, ORC Thermal efficiency gives 36%, 29%, 37% and 38% for R12, R22, R134a, and R290 respectively. Combined – cycle power for each of the refrigerant gives 10568.89kW, 10604.23kW, 10569.47kW and 10736.00kW respectively, combined – cycle thermal efficiency for each refrigerant gives 51.14%, 51.18%, 51.14% and 51.32% for R12, R134a, R22 and R290 respectively. R290 offers optimal performance compared to other refrigerants used in this research. The retrofitting of the ORC has saved some supposedly waste exhaust heat energy and has increased both combined cycle power output and thermal efficiency of the engine cycle.


Author(s):  
Bibhuti B. Sahoo ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Synthesis gas (Syngas), a mixture of hydrogen and carbon monoxide, can be manufactured from natural gas, coal, petroleum, biomass, and even from organic wastes. It can substitute fossil diesel as an alternative gaseous fuel in compression ignition engines under dual fuel operation route. Experiments were conducted in a single cylinder, constant speed and direct injection diesel engine fuelled with syngas-diesel in dual fuel mode. The engine is designed to develop a power output of 5.2 kW at its rated speed of 1500 rpm under variable loads with inducted syngas fuel having H2 to CO ratio of 1:1 by volume. Diesel fuel as a pilot was injected into the engine in the conventional manner. The diesel engine was run at varying loads of 20, 40, 60, 80 and 100%. The performance of dual fuel engine is assessed by parameters such as thermal efficiency, exhaust gas temperature, diesel replacement rate, gas flow rate, peak cylinder pressure, exhaust O2 and emissions like NOx, CO and HC. Dual fuel operation showed a decrease in brake thermal efficiency from 16.1% to a maximum of 20.92% at 80% load. The maximum diesel substitution by syngas was found 58.77% at minimum exhaust O2 availability condition of 80% engine load. The NOx level was reduced from 144 ppm to 103 ppm for syngas-diesel mode at the best efficiency point. Due to poor combustion efficiency of dual fuel operation, there were increases in CO and HC emissions throughout the range of engine test loads. The decrease in peak pressure causes the exhaust gas temperature to rise at all loads of dual fuel operation. The present investigation provides some useful indications of using syngas fuel in a diesel engine under dual fuel operation.


Author(s):  
Leonardo Pierobon ◽  
Fredrik Haglind ◽  
Rambabu Kandepu ◽  
Alessandro Fermi ◽  
Nicola Rossetti

In off-shore oil and gas platforms the selection of the gas turbine to support the electrical and mechanical demand on site is often a compromise between reliability, efficiency, compactness, low weight and fuel flexibility. Therefore, recovering the waste heat in off-shore platforms presents both technological and economic challenges that need to be overcome. However, onshore established technologies such as the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle can be tailored to recover the exhaust heat off-shore. In the present paper, benefits and challenges of these three different technologies are presented, considering the Draugen platform in the North Sea as a base case. The Turboden 65-HRS unit is considered as representative of the organic Rankine cycle technology. Air bottoming cycles are analyzed and optimal design pressure ratios are selected. We also study a one pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2 taxes and natural gas savings are considered. The results indicate that the Turboden 65-HRS unit is the optimal technology, resulting in a combined cycle thermal efficiency of 41.5% and a net present value of around 15 M$, corresponding to a payback time of approximately 4.5 years. The total weight of the unit is expected to be around 250 ton. The air bottoming cycle without intercooling is also a possible alternative due to its low weight (76 ton) and low investment cost (8.8 M$). However, cycle performance and profitability index are poorer, 12.1% and 0.75. Furthermore, the results suggest that the once-trough single pressure steam cycle has a combined cycle thermal efficiency of 40.8% and net present value of 13.5 M$. The total weight of the steam Rankine cycle is estimated to be around 170 ton.


2013 ◽  
Vol 393 ◽  
pp. 781-786 ◽  
Author(s):  
Aman M.I. bin Mamat ◽  
Wan Ahmad Najmi Wan Mohamed

Heat engines convert only approximately 20% to 50% of the supplied energy into mechanical work whereas the remaining energy is lost as rejected heat. Although some of the energy lost is intrinsic to the nature of an engine and cannot be fully overcome (such as energy lost due to friction of moving parts), a large amount of energy can potentially be recovered. This paper presents a heat transfer analysis of a WHE for recovering wasted exhaust energy whilst transferring energy to different organic working fluid used in the OrganicRankine Cycle. The types of considered fluids are R-134a, Propane and Ammonia. The results show that the Ammonia has the highesteffectiveness of 0.25. The maximum heat transferrate of 48.5 kW was recovered using the Ammonia at the exhaust gas temperature of 700°C.


2016 ◽  
Vol 852 ◽  
pp. 724-728 ◽  
Author(s):  
D. Yuvarajan ◽  
K. Pradeep ◽  
S. Magesh Kumar

In this present work, the impact of blending n-butyl alcohol, a next generation biofuel with jatropha biodiesel on the performance of a diesel engine are examined. Tests were performed on a constant speed compression ignition engine using n-butyl alcohol / jatropha biodiesel blends. N-butyl alcohol was added to jatropha biodiesel by 10, 20 and 30% by volume. Performance parameters namely break thermal efficiency (BTE), Brake specific fuel consumption (BSFC) and Exhaust gas temperature (EGT) were analyzed in this work. It was experimentally found that by adding n-butyl alcohol to neat jatropha biodiesel, significant reduction in viscosity was observed. In addition, break thermal efficiency was increased by 0.8 % due to improved atomization of the blends. Further, brake specific fuel and exhaust gas temperature was further reduced due to lower viscosity and improved combustion rate with addition of n-butyl alcohol to jatropha biodiesel.


2019 ◽  
Vol 8 (2) ◽  
pp. 141 ◽  
Author(s):  
Ghalya Pikra ◽  
Nur Rohmah

Regenerative organic Rankine cycle (RORC) can be used to improve organic Rankine cycle (ORC) performance. This paper presents a comparison of a single (SSRORC) and double stage regenerative organic Rankine cycle (DSRORC) using a medium grade heat source. Performance for each system is estimated using the law of thermodynamics I and II through energy and exergy balance. Solar thermal is used as the heat source using therminol 55 as a working fluid, and R141b is used as the organic working fluid. The initial data for the analysis are heat source with 200°C of temperature, and 100 L/min of volume flow rate. Analysis begins by calculating energy input to determine organic working fluid mass flow rate, and continued by calculating energy loss, turbine power and pump power consumption to determine net power output and thermal efficiency. Exergy analysis begins by calculating exergy input to determine exergy efficiency. Exergy loss, exergy destruction at the turbine, pump and feed heater is calculated to complete the calculation. Energy estimation result shows that DSRORC determines better net power output and thermal efficiency for 7.9% than SSRORC, as well as exergy estimation, DSRORC determines higher exergy efficiency for 7.69%. ©2019. CBIORE-IJRED. All rights reserved


Author(s):  
Michael Welch ◽  
Nicola Rossetti

Historically gas turbine power plants have become more efficient and reduced the installed cost/MW by developing larger gas turbines and installing them in combined cycle configuration with a steam turbine. These large gas turbines have been designed to maintain high exhaust gas temperatures to maximise the power generation from the steam turbine and achieve the highest overall electrical efficiencies possible. However, in today’s electricity market, with more emphasis on decentralised power generation, especially in emerging nations, and increasing penetration of intermittent renewable power generation, this solution may not be flexible enough to meet operator demands. An alternative solution to using one or two large gas turbines in a large central combined cycle power plant is to design and install multiple smaller decentralised power plant, based on multiple gas turbines with individual outputs below 100MW, to provide the operational flexibility required and enable this smaller power plant to maintain a high efficiency and low emissions profile over a wide load range. This option helps maintain security of power supplies, as well as providing enhanced operational flexibility through the ability to turn turbines on and off as necessary to match the load demand. The smaller gas turbines though tend not to have been optimised for combined cycle operation, and their exhaust gas temperatures may not be sufficiently high, especially under part load conditions, to generate steam at the conditions needed to achieve a high overall electrical efficiency. ORC technology, thanks to the use of specific organic working fluids, permits efficient exploitation of low temperatures exhaust gas streams, as could be the case for smaller gas turbines, especially when working on poor quality fuels. This paper looks at how a decentralised power plant could be designed using Organic Rankine Cycle (ORC) in place of the conventional steam Rankine Cycle to maximise power generation efficiency and flexibility, while still offering a highly competitive installed cost. Combined cycle power generation utilising ORC technology offers a solution that also has environmental benefits in a water-constrained World. The paper also investigates the differences in plant performance for ORC designs utilising direct heating of the ORC working fluid compared to those using an intermediate thermal oil heating loop, and looks at the challenges involved in connecting multiple gas turbines to a single ORC turbo-generator to keep installed costs to a minimum.


2020 ◽  
Vol 10 (2) ◽  
pp. 183-190
Author(s):  
Viet Dung Tran ◽  
Anh Tuan Le ◽  
Anh Tuan Hoang

As a rule, the highest permissible sulfur content in the marine fuel must drop below 0.5% from 1 January 2020 for global fleets. As such, ships operating in emission control areas must use low sulfur or non-sulfur fuel to limit sulfur emissions as a source of acid rain. However, that fact has revealed two challenges for the operating fleet: the very high cost of ultra-low sulfur diesel (ULSD) and the installation of the fuel conversion system and the ULSD cooling system. Therefore, a solution that blends ULSD and biodiesel (BO) into a homogeneous fuel with properties equivalent to that of mineral fuels is considered to be significantly effective. In the current work, an advanced ultrasonic energy blending technology has been applied to assist in the production of homogeneous ULSD-BO blends (ULSD, B10, B20, B30, and B50 with blends of coconut oil methyl ester with ULSD of 10%, 20%, 30% and 50% by volume) which is supplied to a small marine diesel engine on a dynamo test bench to evaluate the power and torque characteristics, also to consider the effect of BO fuel on specific fuel consumption exhaust gas temperature and brake thermal efficiency. The use of the ultrasonic mixing system has yielded impressive results for the homogeneous blend of ULSD and BO, which has contributed to improved combustion quality and thermal efficiency. The results have shown that the power, torque, and the exhaust gas temperature, decrease by approximately 9%, 2%, and 4% respectively with regarding the increase of the blended biodiesel rate while the specific fuel consumption and brake thermal efficiency tends to increase of around 6% and 11% with those blending ratios.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6018
Author(s):  
Fidelis. I. Abam ◽  
Ogheneruona E. Diemuodeke ◽  
Ekwe. B. Ekwe ◽  
Mohammed Alghassab ◽  
Olusegun D. Samuel ◽  
...  

There is a burden of adequate energy supply for meeting demand and reducing emission to avoid the average global temperature of above 2 °C of the pre-industrial era. Therefore, this study presents the exergoeconomic and environmental analysis of a proposed integrated multi-generation plant (IMP), with supplemental biomass-based syngas firing. An in-service gas turbine plant, fired by natural gas, was retrofitted with a gas turbine (GT), steam turbine (ST), organic Rankine cycle (ORC) for cooling and power production, a modified Kalina cycle (KC) for power production and cooling, and a vapour absorption system (VAB) for cooling. The overall network, energy efficiency, and exergy efficiency of the IMP were estimated at 183 MW, 61.50% and 44.22%, respectively. The specific emissions were estimated at 122.2, 0.222, and 3.0 × 10−7 kg/MWh for CO2, NOx, and CO, respectively. Similarly, the harmful fuel emission factor, and newly introduced sustainability indicators—exergo-thermal index (ETI) and exergetic utility exponent (EUE)—were obtained as 0.00067, 0.675, and 0.734, respectively. The LCC of $1.58 million was obtained, with a payback of 4 years, while the unit cost of energy was estimated at 0.0166 $/kWh. The exergoeconomic factor and the relative cost difference of the IMP were obtained as 50.37% and 162.38%, respectively. The optimum operating parameters obtained by a genetic algorithm gave the plant’s total cost rate of 125.83 $/hr and exergy efficiency of 39.50%. The proposed system had the potential to drive the current energy transition crisis caused by the COVID-19 pandemic shock in the energy sector.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097552
Author(s):  
Youssef A. Attai ◽  
Osayed S. Abu-Elyazeed ◽  
Mohamed R. ElBeshbeshy ◽  
Mohamed A. Ramadan ◽  
Mohamed S. Gad

Castor biodiesel (CBD) was manufactured by slow pyrolysis of oil from highly yielded seeds with anhydrous sodium hydroxide catalyst. An experimental study of engine’s performance, emissions and combustion characteristics using biodiesel blended with gas oil in volumetric ratios of 0, 10, 25, 50, 75, and 100% at different loads was performed. Increase of CBD percentage in the blend led to a reduction in engine’s thermal efficiency, cylinder pressure, net heat release rate, and smoke emission. The exhaust gas temperature, specific fuel consumption, unburned hydrocarbon, CO, and nitrogen oxide emissions were increased with the increase of CBD ratio. Biodiesel showed the maximum increase in specific fuel consumption by 10% and the thermal efficiency was decreased by 10.5% about pure diesel. Smoke emissions were decreased for CBD100 by 12% about gas oil. The maximum increases in NOx, CO, HC emissions, and exhaust gas temperature for CBD 100 were 22, 34, 48, and 11%, respectively related to diesel oil. The maximum reductions in cylinder pressure and net heat release rate were 5 and 13% for CBD100 about gas oil, respectively. Biodiesel percentage of 10% showed near values of performance parameters and emissions to gas oil, so, it is recommended as the optimum percentage.


Sign in / Sign up

Export Citation Format

Share Document