scholarly journals Time-Domain Minimization of Voltage and Current Total Harmonic Distortion for a Single-Phase Multilevel Inverter with a Staircase Modulation

Energies ◽  
2016 ◽  
Vol 9 (10) ◽  
pp. 815 ◽  
Author(s):  
Milan Srndovic ◽  
Yakov Familiant ◽  
Gabriele Grandi ◽  
Alex Ruderman
Author(s):  
Kureve D. Teryima ◽  
Goshwe Y. Nentawe ◽  
Agbo O. David

<p>This paper proposes a switching control for a cascaded H-bridge inverter structure with reduced switches which is used to improve the THD performance of a single phase five level CHB MLI. The multi level inverter is simulated for the conventional carrier overlapping APOD and the proposed carrier overlapping APOD Pulse Width Modulation (PWM) switching control technique. The total harmonic distortion (THD) of the output voltages are observed for both PWM control techniques. The performance of the symmetric CHB MLI is simulated using MATLAB-SIMULINK. It is observed that the proposed carrier overlapping APODPWM provides output with relatively low THD as compared to the conventional carrier overlapping APODPWM.</p>


Author(s):  
Kureve D. Teryima ◽  
Goshwe Y. Nentawe ◽  
Agbo O. David

This paper proposes a switching control for a cascaded H-bridge inverter structure with reduced switches which is used to improve the THD performance of a single phase five level CHB MLI. The multi level inverter is simulated for the conventional carrier overlapping APOD and the proposed carrier overlapping APOD Pulse Width Modulation (PWM) switching control technique. The total harmonic distortion (THD) of the output voltages are observed for both PWM control techniques. The performance of the symmetric CHB MLI is simulated using MATLAB-SIMULINK. It is observed that the proposed carrier overlapping APODPWM provides output with relatively low THD as compared to the conventional carrier overlapping APODPWM.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 327
Author(s):  
Wahyu Mulyo Utomo ◽  
Afarulrazi Abu Bakar ◽  
Suhaila Alias ◽  
Sim Sy Yi ◽  
Muhammad Ikhsan Setiawan ◽  
...  

Recently, almost all industrial devices are mostly built on electronic devices which are precisely sensitive to harmonic. In order to meet the requirement from the industries demand aimed at a free-harmonics and high power rating source is remarkably increased in past few years. An inverter which a device or electric circuit that convert direct current to alternating current is one of the electronic devices that give concern to researchers for improvement of generating a neat power source. The inverter can be categorized into a single level and multilevel inverter. As compared to single level inverter, multilevel inverter offers minimum harmonic distortion and higher power output. This paper presents a model of multilevel inverter using 7-level Cascaded H-Bridge of multilevel DC-AC inverter to reduce total harmonic distortion with different sinusoidal pulse width modulation such as phase disposition and phase opposition disposition. Simulation output of single phase multilevel inverter cascaded H-bridge are analysed and verified in the Matlab/Simulink software. The result show that the 7-level cascaded H-Bridge multilevel inverter with phase disposition technique generate less total harmonic distortion if it is compared to the phase opposition disposition technique. 


2018 ◽  
Vol 7 (2.24) ◽  
pp. 55
Author(s):  
Anuja Prashant Diwan ◽  
N Booma Nagarajan ◽  
T Murugan ◽  
S Ashrafudeen ◽  
G J. Jenito Paul

In this paper, single phase nine level cascaded multilevel inverter using trinary voltage source is described. Normally for getting nine level MLI output, four H-Bridges are required. But in proposed method, nine level output is achieved by using two H-Bridges only. Performance of Multilevel inverter is improved by using modular switching pattern. This method reduces the number of switches to the half and thus reduces switching losses. Since the number of levels at the output voltage is increased, Total Harmonic Distortion (THD) gets reduced significantly. This presents simple configuration is simple and can be controlled easily. MATLAB-SIMULINK is used to validate the results of proposed technic, simulation is carried out using. The proposed method has been exhaustively compared with classical cascaded H-Bridge topology. 


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3467 ◽  
Author(s):  
Po Li ◽  
Ruiyu Li ◽  
Haifeng Feng

Inverters are commonly controlled to generate AC current and Total Harmonic Distortion (THD) is the core index in judging the control effect. In this paper, a THD oriented Finite Control Set Model Predictive Control (FCS MPC) scheme is proposed for the single-phase inverter, where a optimization problem is solved to obtain the switching law for realization. Different from the traditional cost function, which focuses on the instantaneous deviation of amplitude between predictive current and its reference, we redesign a cost function that is the linear combination of the current fundamental tracking error, instantaneous THD value and DC component in one fundamental cycle (for 50 Hz, it is 0.02 s). Iterative method is developed for rapid calculation of this cost function. By choosing a switching state from a FCS to minimize the cost function, a FCS MPC is finally constructed. Simulation results in Matlab/Simulink and experimental results on rapid control prototype platform show the effect of this method. Analyses illustrate that, by choosing suitable weight of the cost function, the performance of this THD oriented FCS MPC method is better than the traditional one.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950089 ◽  
Author(s):  
V. Thiyagarajan ◽  
P. Somasundaram ◽  
K. Ramash Kumar

Multilevel inverter (MLI) has become more popular in high power, high voltage industries owing to its high quality output voltage waveform. This paper proposes a novel single phase extendable type MLI topology. The term ‘extendable’ is included since the presented topology can be extended with maximum number of dc voltage sources to synthesize larger output levels. This topology can be operated in both symmetrical and asymmetrical conditions. The major advantages of the proposed inverter topology include minimum switching components, reduced gate driver circuits, less harmonic distortion and reduced switching losses. The comparative analysis based on the number of switches, dc voltage sources and conduction switches between the proposed topology and other existing topologies is presented in this paper. The comparison results show that the proposed inverter topology requires fewer components. The performance of the proposed MLI topology has been analyzed in both symmetrical and asymmetrical conditions. The simulation model is developed using MATLAB/SIMULINK software to verify the performance of the proposed inverter topology and also the feasibility of the presented topology during the symmetrical condition has been validated experimentally.


Sign in / Sign up

Export Citation Format

Share Document