Simulation and Analysis of Novel Extendable Multilevel Inverter Topology

2019 ◽  
Vol 28 (06) ◽  
pp. 1950089 ◽  
Author(s):  
V. Thiyagarajan ◽  
P. Somasundaram ◽  
K. Ramash Kumar

Multilevel inverter (MLI) has become more popular in high power, high voltage industries owing to its high quality output voltage waveform. This paper proposes a novel single phase extendable type MLI topology. The term ‘extendable’ is included since the presented topology can be extended with maximum number of dc voltage sources to synthesize larger output levels. This topology can be operated in both symmetrical and asymmetrical conditions. The major advantages of the proposed inverter topology include minimum switching components, reduced gate driver circuits, less harmonic distortion and reduced switching losses. The comparative analysis based on the number of switches, dc voltage sources and conduction switches between the proposed topology and other existing topologies is presented in this paper. The comparison results show that the proposed inverter topology requires fewer components. The performance of the proposed MLI topology has been analyzed in both symmetrical and asymmetrical conditions. The simulation model is developed using MATLAB/SIMULINK software to verify the performance of the proposed inverter topology and also the feasibility of the presented topology during the symmetrical condition has been validated experimentally.

2017 ◽  
Vol 7 (1.5) ◽  
pp. 209
Author(s):  
B.Vijaya Krishna ◽  
B. Venkata Prashanth ◽  
P. Sujatha

Multilevel Inverters (MLI) have very good features when compared to Inverters. But using more switches in the conventional configuration will reduce its application in a wider range. For that reason a modified 7-level MLI Topology is presented. This new topology consists of less number of switches that can be reduced to the maximum extent and a separate gate trigger circuit. This will reduce the switching losses, reduce the size of the multilevel inverter, and cost of installation. This new topology can be used in Electrical drives and renewable energy applications. Performance of the new MLI is tested via. Total harmonic distortion. This construction structure of this multilevel inverter topology can also be increased for 9-level, 11-level and so on and simulated by the use of MATLAB/SIMULINK. A separate Carrier Based PWM Technique is used for the pulse generation in this configuration.


Author(s):  
M. S. Chye ◽  
J. A. Soo ◽  
Y. C. Tan ◽  
M. Aizuddin ◽  
S. Lee ◽  
...  

This paper presents a single-phase multilevel inverter (MLI) with simpler basic unit cells. The proposed MLI is able to operate in two modes, i.e. charge mode to charge the batteries, and inverter mode to supply AC power to load, and therefore, it is inherently suitable for photovoltaic (PV) power generation applications. The proposed MLI requires lower number of power MOSFETs and gate driver units, which will translate into higher cost saving and better system reliability. The power MOSFETs in the basic unit cells and H-bridge module are switched at near fundamental frequency, i.e. 100 Hz and 50 Hz, respectively, resulting in lower switching losses. For low total harmonic distortion (THD) operation, a deep scanning method is employed to calculate the switching angles of the MLI. The lowest THD obtained is 8.91% at modulation index of 0.82. The performance of the proposed MLI (9-level) has been simulated and evaluated experimentally. The simulation and experimental results are in good agreement and this confirms that the proposed MLI is able to produce an AC output voltage with low THD.


2015 ◽  
Vol 793 ◽  
pp. 167-171
Author(s):  
Mohd Aizuddin Yusof ◽  
Yee Chyan Tan ◽  
M. Othman ◽  
S.S. Lee ◽  
M.A. Roslan ◽  
...  

Multilevel inverters are one of the preferred inverter choices for solar photovoltaic (PV) applications. While these inverters are capable of producing AC staircase output voltage waveform, the total harmonic distortion (THD) of the output voltage waveform can become worse if the switching angle of each voltage level is not carefully chosen. In this paper, four switching angle arrangement techniques are presented and the switching angles generated by these techniques are applied to a new single-phase boost multilevel (SPBM) inverter. The performance of 3-, 5-, 7-, 9-and 11-level SPBM inverter having four different sets of switching angles derived using the aforementioned techniques have been evaluated and compared using PSIM software. Simulation results show that one of the techniques is able to produce an output voltage waveform with the lowest THD, whilst the other generates an output voltage waveform with the highest fundamental voltage component.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850187 ◽  
Author(s):  
Rasoul Shalchi Alishah ◽  
Seyed Hossein Hosseini ◽  
Ebrahim Babaei ◽  
Mehran Sabahi ◽  
Jaber Fallah Ardashir

In this paper, a new structure for multilevel converter based on improved H-bridge converter is presented. The proposed topology is a symmetric topology since the values of all voltage sources are equal. The proposed symmetric structure is a general topology which can be extended for any number of voltage levels at output voltage waveform to obtain the least value of total harmonic distortion (THD). Reduction of switching losses, conduction losses, the number of on-state switches in the current path, utilized DC voltage sources, and gate driver circuits are the main advantages of proposed symmetric structures in comparison with other symmetric topologies. All mathematical analysis on the proposed structure is presented in terms of power losses and maximum blocked voltage by switches. The comparison results with other recently presented symmetric topologies and traditional multilevel converter structures are provided. Experimental results for a thirteen-level converter based on presented structure are provided to validate the practicality of the suggested multilevel structure.


2022 ◽  
Vol 18 (1) ◽  
pp. 48-57
Author(s):  
Aws Al-Jrew ◽  
Jawad Mahmood ◽  
Ramzy Ali

In this article, a comparison of innovative multilevel inverter topology with standard topologies has been conducted. The proposed single phase five level inverter topology has been used for induction heating system. This suggested design generates five voltage levels with a fewer number of power switches. This reduction in number of switches decreases the switching losses and the number of driving circuits and reduce the complexity of control circuit. It also reduces the cost and size for the filter used. Analysis and comparison has been done among the conventional topologies (neutral clamped and cascade H-bridge multilevel inverters) with the proposed inverter topology. The analysis includes the total harmonic distortion THD, efficiency and overall performance of the inverter systems. The simulation and analysis have been done using MATLAB/ SIMULINK. The results show good performance for the proposed topology in comparison with the conventional topologies.


Author(s):  
R. Palanisamy ◽  
V. Sinmayee ◽  
K. Selvakumar ◽  
K. Vijayakumar

<p>In this paper a novel 5 switch seven level DC-AC inverter is being proposed. The proposed multilevel inverter uses reduced number of switches as compared to the switches used in the conventional multilevel inverter. The inverter has been designed to generate a 7 level AC output using 5 switches. The voltage stress on each of the switches as well as the switching losses is found to be less, minimized common mode voltage (CMV) level and reduced total harmonic distortion. The proposed 7-level inverter topology has four dc sources, which is energized through the PV system. Proposed inverter is controlled with help of multicarrier sinusoidal pulse width modulation (MCSPWM).The simulation and hardware results were verified using matlab simulink and dspic microcontroller respectively.</p>


Author(s):  
Prathap Reddy Bhimireddy ◽  
Sreekanth Reddy Kondreddy ◽  
Samba Siva Reddy Beduduri

In this paper, a novel single-phase bridge inverter is presented which can generate a more number of voltage levels with reduced number of switches, gate driver circuits and diodes as compare to normal multilevel inverter. Another feature of this inverter is its ability to prodeuce the voltages from a single dc-link power supply which enables back-to-back operation of converter. The proposed inverter with more number of levels can improve power quality, lower switching losses and produce high quality voltage waveforms. Also, the proposed inverter can be operated at all load power factor.The research of the model is done by means of computer simulation with the software MATLAB/SIMULINK. This configuration has very low dv/dt and common-mode voltage variation. Also this inverter is help full for reactive power compensation.


2018 ◽  
Vol 27 (14) ◽  
pp. 1850223 ◽  
Author(s):  
G. Chitrakala ◽  
N. Stalin ◽  
V. Mohan

The multilevel inverter (MLI) has ascertained its gravity in high-power applications for the past three decades through perennial topological modifications from the pristine structure and development of apposite modulation strategies. The benefits, including subtle switch voltage stress, reduced output voltage total harmonic distortion (THD), tolerable electromagnetic compatibility (EMC), minimal switching losses and [Formula: see text]/[Formula: see text] stress, have prepared it as a very promising candidate in high-power drives and electric utility applications. Meanwhile, MLI has few drawbacks such as higher number of switches with associated peripherals (gate driver circuits, protection circuits and heat sinks) which makes the overall system complex, bulky and costly. There have been many attempts to curb the component count in MLI structure. In this paper, a new topology is developed with a perspective to wane the switch count, which also has the ability of working in both symmetrical and asymmetrical modes. The performance of the proposed segmented ladder-structured MLI (SLSMLI) topology is substantiated with simulation study and experimentation.


Author(s):  
Radouane Majdoul ◽  
Abelwahed Touati ◽  
Abderrahmane Ouchatti ◽  
Abderrahim Taouni ◽  
Elhassane Abdelmounim

<span lang="EN-US">A new bidirectional multilevel inverter topology with a high number of voltage levels with a very reduced number of power components is proposed in this paper. Only TEN power switches and four asymmetric DC voltage sources are used to generate 25 voltage levels in this new topology. The proposed multilevel converter is more suitable for e-mobility and photovoltaic applications where the overall energy source can be composed of a few units/associations of several basic source modules. Several benefits are provided by this new topology: Highly sinusoidal current and voltage waveforms, low Total Harmonic Distortion, very low switching losses, and minimum cost and size of the device. For optimum control of this 25-level voltage inverter, a special Modified Hybrid Modulation technique is performed. The proposed 25-level inverter is compared to various topologies published recently in terms of cost, the number of active power switches, clamped diodes, flying capacitors, DC floating capacitors, and the number of DC voltage sources. This comparison clearly shows that the proposed topology is cost-effective, compact, and very efficient. The effectiveness and the good performance of the proposed multilevel power converter (with and without PWM control) are verified and checked by computational simulations.</span>


Author(s):  
S. Kakar ◽  
S. M. Ayob ◽  
N. M. Nordin ◽  
M. S. Arif ◽  
A. Jusoh ◽  
...  

In this paper, a new asymmetrical multilevel inverter topology (MLI) is proposed with the objectives of using decreased number of semiconductor switches, dc voltage sources, gate driver circuits and dc links. The structure of presented MLI is very simple and modular. The fundamental module of this structure consists of nine semiconductor switches (eight unidirectional and one bidirectional) and four asymmetrical configured DC sources (ratio of 1:2), which can generate 13-level output voltage. To validate the design, a Matlab-Simulink based model is developed. For this paper, a Sinusoidal Pulse Width Modulation (SPWM) is deployed as the switching strategy of the proposed MLI. The circuit model is simulated under pure resistive and inductive loads. It will be shown that the circuit performs well under both loads. Comparison with traditional MLIs and other recently introduced MLIs will be conducted to show the superiority of the proposed MLI in terms of reduced number of devices and lower voltage stress across the switches.


Sign in / Sign up

Export Citation Format

Share Document