scholarly journals Joule Heating Effects in Electrokinetic Remediation: Role of Non-Uniform Soil Environments: Temperature Profile Behavior and Hydrodynamics

Environments ◽  
2018 ◽  
Vol 5 (8) ◽  
pp. 92
Author(s):  
Cynthia M. Torres ◽  
Pedro E. Arce ◽  
Francisca J. Justel ◽  
Leonardo Romero ◽  
Yousef Ghorbani

Electrokinetic remediation is a process in which a low-voltage direct-current electric field is applied across a section of contaminated soil to remove contaminants. In this work, the effect of Joule heating on the heat transfer and hydrodynamics aspects in a non-uniform environment is simulated. The proposed model is based on a rectangular capillary with non-symmetrical heat transfer conditions similar to those found in non-uniform soil environments. The mathematical and microscopic model described here uses two key parameters in addition to the Nusselt number: the ratio between the Nusselt numbers calculated at both walls of the capillary, named R, and a function of this variable and the Nusselt number, indicated by F(R, Nu). Illustrations describing the five key regimens for the system behavior are presented in terms of ranges for R and F(R, Nu) values, which indicate the key role of the parameter R in controlling the behaviors of the temperature and velocity profiles. Prediction, analysis, and illustration of five different regimes of flow complete the study, and conclusions are given to illustrate how the behavior of the system is affected.

2003 ◽  
Vol 125 (3) ◽  
pp. 575-584 ◽  
Author(s):  
P. M. Ligrani ◽  
G. I. Mahmood

Spatially resolved Nusselt numbers, spatially averaged Nusselt numbers, and friction factors are presented for a stationary channel with an aspect ratio of 4 and angled rib turbulators inclined at 45 deg with perpendicular orientations on two opposite surfaces. Results are given at different Reynolds numbers based on channel height from 10,000 to 83,700. The ratio of rib height to hydraulic diameter is .078, the rib pitch-to-height ratio is 10, and the blockage provided by the ribs is 25% of the channel cross-sectional area. Nusselt numbers are given both with and without three-dimensional conduction considered within the acrylic test surface. In both cases, spatially resolved local Nusselt numbers are highest on tops of the rib turbulators, with lower magnitudes on flat surfaces between the ribs, where regions of flow separation and shear layer reattachment have pronounced influences on local surface heat transfer behavior. The augmented local and spatially averaged Nusselt number ratios (rib turbulator Nusselt numbers normalized by values measured in a smooth channel) vary locally on the rib tops as Reynolds number increases. Nusselt number ratios decrease on the flat regions away from the ribs, especially at locations just downstream of the ribs, as Reynolds number increases. When adjusted to account for conduction along and within the test surface, Nusselt number ratios show different quantitative variations (with location along the test surface), compared to variations when no conduction is included. Changes include: (i) decreased local Nusselt number ratios along the central part of each rib top surface as heat transfer from the sides of each rib becomes larger, and (ii) Nusselt number ratio decreases near corners, where each rib joins the flat part of the test surface, especially on the downstream side of each rib. With no conduction along and within the test surface (and variable heat flux assumed into the air stream), globally-averaged Nusselt number ratios vary from 2.92 to 1.64 as Reynolds number increases from 10,000 to 83,700. Corresponding thermal performance parameters also decrease as Reynolds number increases over this range, with values in approximate agreement with data measured by other investigators in a square channel also with 45 deg oriented ribs.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Fangyuan Liu ◽  
Junkui Mao ◽  
Chao Han ◽  
Yuanjian Liu ◽  
Xingsi Han ◽  
...  

Considering the complicated geometry in an active clearance control (ACC) system, the design of an improved cooling feed pipe with a covering plate for a high pressure ribbed turbine case was investigated. Numerical calculations were analyzed to obtain the interactions between the impinging jet arrays fed by the pipe. Experimental tests were performed to explore the effect of the Reynolds number (2000–20,000) and the jet-to-surface spacing ratio (6–10) on the streamwise-averaged Nusselt numbers. Additionally, the effect of the crossflow produced by the configuration was investigated. Results showed a confined curved channel was formed by the pipe and ribbed case, which resulted in crossflow. The crossflow evolved into vortices and the streamwise-averaged Nusselt number on the high ribs was subsequently increased. Furthermore, the distribution of the heat transfer on the entire surface became more uniform compared with that of traditional impinging jet arrays. A higher Nusselt number was achieved by decreasing the jet-to-surface spacing and increasing the Reynolds number. This investigation has revealed a cooling configuration for controlling the wall flow and evening the heat transfer on the case surface, especially for the ribs.


2019 ◽  
Vol 16 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Ishrat Zahan ◽  
R Nasrin ◽  
M A Alim

A numerical analysis has been conducted to show the effects of magnetohydrodynamic (MHD) and Joule heating on heat transfer phenomenon in a lid driven triangular cavity. The heat transfer fluid (HTF) has been considered as water based hybrid nanofluid composed of equal quantities of Cu and TiO2 nanoparticles. The bottom wall of the cavity is undulated in sinusoidal pattern and cooled isothermally. The left vertical wall of the cavity is heated while the inclined side is insulated. The two dimensional governing partial differential equations of heat transfer and fluid flow with appropriate boundary conditions have been solved by using Galerkin's finite element method built in COMSOL Multyphysics. The effects of Hartmann number, Joule heating, number of undulation and Richardson number on the flow structure and heat transfer characteristics have been studied in details. The values of Prandtl number and solid volume fraction of hybrid nanoparticles have been considered as fixed. Also, the code validation has been shown. The numerical results have been presented in terms of streamlines, isotherms and average Nusselt number of the hybrid nanofluid for different values of governing parameters. The comparison of heat transfer rate by using hybrid nanofluid, Cu-water nanofluid,  TiO2 -water nanofluid and clear water has been also shown. Increasing wave number from 0 to 3 enhances the heat transfer rate by 16.89%. The enhanced rate of mean Nusselt number for hybrid nanofluid is found as 4.11% compared to base fluid.


Author(s):  
M. R. Salem ◽  
K. M. Elshazly ◽  
R. Y. Sakr ◽  
R. K. Ali

The present work experimentally investigates the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to friction factor for fully developed flow through the helically coiled tube (HCT). The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid operating conditions. Here, five heat exchangers of counter-flow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of the two sides of the heat exchangers. Totally, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of the two sides of the heat exchangers and the overall heat transfer coefficients increased by increasing coil curvature ratio. The average increase in the average Nusselt number is of 160.3–80.6% for the HCT side and of 224.3–92.6% for the shell side when δ increases from 0.0392 to 0.1194 within the investigated ranges of different parameters. Also, for the same flow rate in both heat exchanger sides, the effect of coil pitch and number of turns with the same coil torsion and tube length is remarkable on shell average Nusselt number while it is insignificant on HCT-average Nusselt number. In addition, a significant increase of 33.2–7.7% is obtained in the HCT-Fanning friction factor (fc) when δ increases from 0.0392 to 0.1194. Correlations for the average Nusselt numbers for both heat exchanger sides and the HCT Fanning friction factor as a function of the investigated parameters are obtained.


Author(s):  
Todd Hahn ◽  
Bryant Deakins ◽  
Andrew Buechler ◽  
Sourabh Kumar ◽  
R. S. Amano

This paper describes the experimental analysis of the heat transfer rate within an internal passage of a typical gas turbine blade using varied internal geometries. This method of alteration, using rib turbulator’s within the serpentine cooling passages of a hollow turbine blade, has proven to drastically cool turbine blades more significantly than a smooth channel alone. Our emphasis is to determine which rib geometry will yield the highest heat transfer rate, which was examined in the form of a comparison between theoretical to experimental Nusselt numbers. For testing purposes, an enclosed 2 in. × 2 in. square Plexiglas channel was constructed to model an internal cooling passage within a turbine blade. Silicon heat strips, wrapped in copper foil, were placed on the bottom surface of the channel to ensure even heat distribution throughout. To measure internal surface temperatures, thermocouples were placed on the surface of heat plate as well as in the opening of the channel throughout. The four different rib geometries which were individually wrapped in copper foil were then placed on top of the heating element. To compare the rib geometry results with a control, a test was run with no ribs. To simulate turbulent air flow through the channel, a blower supplied velocities of 23.88 m/s and 27.86 m/s. These velocities yielded a Reynolds number ranging between 70,000 and 90,000. Final results were found in the form of the experimental Nusselt number divided by the theoretical Nusselt number, a standard when comparing surface heat transfer rates. The 60 degree staggered arrow geometry pointing away from the inlet and outlet (geometry 4) proved to create the highest heat transfer rate through the way it produced turbulent air flow. The average Nusselt number of this design was found to be 718.2 and 868.3 for 23.88 and 27.86 m/s respectively. From the calculated data it was found that higher Nusselt numbers were more prone to occur in higher air velocities.


2006 ◽  
Vol 129 (2) ◽  
pp. 167-178 ◽  
Author(s):  
Wilson Terrell ◽  
Ty A. Newell

Background. An experimental study of buoyancy driven convection heat transfer in an open cavity was conducted. Method of Approach. Test cavities were constructed with calorimeter plates bonded to Styrofoam insulation. The inside of the cavities was heated and then exposed to ambient air for approximately thirty minutes. Different size cavities were examined at inclination angles of 0, 45, and 90deg. The heat transfer coefficient was determined from an energy balance on each calorimeter plate. The cavity’s plate temperatures varied spatially due to the transient nature of the tests. A parameter describing the nonisothermal cavity wall temperature variation was defined in order to compare with isothermal cavity heat transfer results. Results. Results showed that the cavity Nusselt number, based on a cavity averaged temperature, was insensitive to the transient development of nonisothermal conditions within the cavity. Comparison of cavity-average Nusselt number for the current study, where the Rayleigh number ranged from 5×106 to 2×108, to data from the literature showed good agreement. Cavity-average Nusselt number relations for inclination angles of 0, 45, and 90deg in the form of NuH,cav=CRa1∕3 resulted in coefficients of 0.091, 0.105, 0.093, respectively. The 45deg inclination angle orientation yielded the largest Nusselt numbers, which was similar to previous literature results. Trends in the local plate Nusselt numbers were examined and found similar to data from the literature.


2013 ◽  
Vol 11 (2) ◽  
pp. 815-823 ◽  
Author(s):  
Mario A. Oyanader ◽  
Pedro E. Arce ◽  
James D. Bolden

Abstract An analysis for boundary layer flows caused by natural convection due to heat generation caused by the Joule heating effect is presented. The integral approximation approach developed by Von Karman is used to model the boundary layer flow in the system. Effects of the heat generation on temperature and velocity profiles as well as on the boundary layer thickness are discussed, and their implication for possible convective mixing effects near the electrode region is highlighted. These are important pieces of information when designing applications in electrokinetic remediation and separation of biomolecules.


Author(s):  
Victor J. Zimmer ◽  
James L. Rutledge ◽  
Chris Knieriem ◽  
Shichuan Ou

Interest in impingement jet cooling and the associated convection phenomena has grown in the past few decades due in part to the desire for higher operating temperatures and reduced coolant flow in turbines. This study utilizes an array of 55 impingement jets to explore both steady and unsteady impingement flow conditions to evaluate the impact of the inherent unsteadiness present in engines compared to traditional steady experiments. Although unsteadiness occurs naturally in engines, intentional pulsation of coolant flow has also been proposed for flow control purposes, further underscoring the need for examination of the impact of pulsation on the heat transfer. Flow unsteadiness of varying amplitudes was induced at Strouhal numbers of magnitude 10−3 to 10−4. Infrared thermography was used to determine high spatial and temporal resolution Nusselt numbers. Time-resolved Nusselt number and mass flow characteristic waveforms were found to differ substantially as a function of the fluctuation amplitude relative to the mean. In some cases, transient coolant flow increases were associated with non-monotonic behavior in the time resolved Nusselt number. Although with certain configurations unsteady flow demonstrated time-averaged Nusselt numbers equivalent to steady flow with equivalent average mass flux, those with the greatest fluctuation in the amplitude of flow unsteadiness relative to the mean resulted in lower average Nusselt numbers.


2021 ◽  
pp. 183-183
Author(s):  
Sendogan Karagoz ◽  
Semih Erzincanli ◽  
Orhan Yildirim ◽  
Ilker Firat ◽  
Mehmet Kaya ◽  
...  

This experimental study deals with the heat transfer and friction effects of sinusoidal part turbulators for single-phase flows occurring in a circular shaped pipe. Turbulators with three different radius values are placed in the pipe to make the flow turbulent. In this way, changes in Nusselt number and friction coefficient are examined. As a result of the experiments made with Reynolds numbers in the range of 6614-20710, the increase rates of the Nusselt numbers of turbulators with 20 mm, 110 mm and 220 mm radius compared to the empty pipe were obtained as 153.49%, 85.36%, and 52.09%, respectively. As a result of the decrease in the radius, there was an increase in the Nusselt number and the friction factor. Parallel to the Nusselt number, the highest friction factor was obtained in the smallest radius turbulator. It was found that the thermal enhancement factors of 110 mm and 220 mm radius turbulators increased by 179.54% and 132.95%, respectively, compared to the 20 mm radius turbulator. Similarly, it was determined that the thermal enhancement factor of the 110 mm radius turbulator increased by 20% compared to the 220 mm radius turbulator.


Author(s):  
Y. S. Muzychka ◽  
M. Ghobadi

Heat transfer in micro and mini-scale ducts and channels is considered. In particular, issues of thermal performance are considered in systems with constant wall temperature at low to moderate Reynolds numbers or small dimensional scales which lead to conditions characteristic of thermally fully developed flows or within the transition region leading to thermally fully developed flows. An analysis of two approaches to representing experimental data is given. One using the traditional Nusselt number and another using the dimensionless mean wall flux. Both approaches offer a number of advantages and disadvantages. In particular, it is shown that while good data can be obtained which agree with predicted heat transfer rates, the same data can be problematic if one desires a Nusselt number. Other issues such as boundary conditions pertaining to measuring thermally developing and fully developed flow Nusselt numbers are also discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document