The Influence of Coolant Unsteadiness on Impingement Heat Transfer
Interest in impingement jet cooling and the associated convection phenomena has grown in the past few decades due in part to the desire for higher operating temperatures and reduced coolant flow in turbines. This study utilizes an array of 55 impingement jets to explore both steady and unsteady impingement flow conditions to evaluate the impact of the inherent unsteadiness present in engines compared to traditional steady experiments. Although unsteadiness occurs naturally in engines, intentional pulsation of coolant flow has also been proposed for flow control purposes, further underscoring the need for examination of the impact of pulsation on the heat transfer. Flow unsteadiness of varying amplitudes was induced at Strouhal numbers of magnitude 10−3 to 10−4. Infrared thermography was used to determine high spatial and temporal resolution Nusselt numbers. Time-resolved Nusselt number and mass flow characteristic waveforms were found to differ substantially as a function of the fluctuation amplitude relative to the mean. In some cases, transient coolant flow increases were associated with non-monotonic behavior in the time resolved Nusselt number. Although with certain configurations unsteady flow demonstrated time-averaged Nusselt numbers equivalent to steady flow with equivalent average mass flux, those with the greatest fluctuation in the amplitude of flow unsteadiness relative to the mean resulted in lower average Nusselt numbers.