scholarly journals Assessing Health Effects and Soundscape Analysis as New Mitigation Actions Concerning the Aircraft Noise Impact in Small- and Middle-Size Urban Areas in Greece

Environments ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 4 ◽  
Author(s):  
Georgia Gerolymatou ◽  
Nicolas Rémy ◽  
Konstantinos Vogiatzis ◽  
Vassiliki Zafiropoulou

In 2013 and 2014, two main International Airports in Greece were evaluated through the European directive on noise environment 2002/49/EC: “Nikos Kazantzakis” International Airport of Heraklion Crete and “Ioannis—Kapodistrias” International Airport in Corfu, both located in highly touristic areas of Greece. Acoustic measurement’s campaign, environmental noise mapping simulations and population exposure to noise were implemented in order to produce a complete Strategic Noise Map. Correlated to this acoustic approach, a comprehensive interview campaign and a detailed soundscape analysis were also conducted in both airports’ adjacent areas (Alikarnassos district in Heraklion and the peninsula of Canoni in Corfu City) in order to understand the impact of aircraft movements on both local residents and tourists, and analyze the perception of the soundscapes. A similar evaluation was also executed in order to assess possible health effects by using the WHO’s DALY’s (Disability Adjusted Life Year) metrics for environmental noise in relation to the exposure of the population. This paper presents the main results of these representative case studies, attempting a combined assessment of both health effects and soundscape characteristics to be used as evaluation tools towards the management and the rehabilitation acoustic environment characterized mainly by aircraft noise in touristic areas.

Noise Mapping ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 87-98
Author(s):  
Konstantinos Vogiatzis ◽  
Dimitrios Dimitriou ◽  
Georgia Gerolymatou ◽  
Aristeidis Konstantinidis

AbstractAthens International Airport (A.I.A) is the first major transportation infrastructure in Greece with the participation of the private sector, a pioneer international Public-Private Partnership. Environmental protection is a priority, and AIA, is committed to protect the environment and preventing or lessening negative impacts, through a comprehensive Environmental Policy and Procedures. Within this framework, AIA has already carried out the study for Strategic Noise Map (SNM) and the Noise Action Plan (NAP) for the Aircraft Noise. According to the European Directive 49/2002 the study should be repeated every 5 years. This research article focuses on the comparative study for the latest SNMs 2017 & 2019 (ECAC Doc.29) and for 2019 (executed by the new methodology CNOSSOS-GR), for the respective traffic data 2016 & 2018, and presents the results of the acoustic model in order to create the Strategic Noise Maps for Lden & Lnight indicators. With a view to implementing the legislation, an analysis of aircraft mix for every year (except helicopters, military and other specific flights) was carried out in accordance with the categorisation provided for in the relevant recommendation of the Committee of 6 August 2003 and the European Commission adopted Directive 2015/996. The potential health effects were further analyzed using the World Health Organization (WHO’s) Disability Adjusted Life Year’s (DALY’s) metrics for aircraft noise in relation to the exposure of the population based on the results of alternative comparative Strategic Noise Maps. The aim of the study is to show how the combination of both the implementation of the European Directive 2002/49 and 2015/996 and the DALY approach is an analysis tool for the evaluation of the acoustic environment. As we can observe in the results, the overall findings are significantly lower in the case of SNM 2019 (executed by the new methodology CNOSSOS-GR) than in the others.


2020 ◽  
Vol 20 (17) ◽  
pp. 10667-10686
Author(s):  
Martin O. P. Ramacher ◽  
Lin Tang ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Shipping is an important source of air pollutants, from the global to the local scale. Ships emit substantial amounts of sulfur dioxides, nitrogen dioxides, and particulate matter in the vicinity of coasts, threatening the health of the coastal population, especially in harbour cities. Reductions in emissions due to shipping have been targeted by several regulations. Nevertheless, effects of these regulations come into force with temporal delays, global ship traffic is expected to grow in the future, and other land-based anthropogenic emissions might decrease. Thus, it is necessary to investigate combined impacts to identify the impact of shipping activities on air quality, population exposure, and health effects in the future. We investigated the future effect of shipping emissions on air quality and related health effects considering different scenarios of the development of shipping under current regional trends of economic growth and already decided regulations in the Gothenburg urban area in 2040. Additionally, we investigated the impact of a large-scale implementation of shore electricity in the Port of Gothenburg. For this purpose, we established a one-way nested chemistry transport modelling (CTM) system from the global to the urban scale, to calculate pollutant concentrations, population-weighted concentrations, and health effects related to NO2, PM2.5, and O3. The simulated concentrations of NO2 and PM2.5 in future scenarios for the year 2040 are in general very low with up to 4 ppb for NO2 and up to 3.5 µg m−3 PM2.5 in the urban areas which are not close to the port area. From 2012 the simulated overall exposure to PM2.5 decreased by approximately 30 % in simulated future scenarios; for NO2 the decrease was over 60 %. The simulated concentrations of O3 increased from the year 2012 to 2040 by about 20 %. In general, the contributions of local shipping emissions in 2040 focus on the harbour area but to some extent also influence the rest of the city domain. The simulated impact of onshore electricity implementation for shipping in 2040 shows reductions for NO2 in the port of up to 30 %, while increasing O3 of up to 3 %. Implementation of onshore electricity for ships at berth leads to additional local reduction potentials of up to 3 % for PM2.5 and 12 % for SO2 in the port area. All future scenarios show substantial decreases in population-weighted exposure and health-effect impacts.


Author(s):  
Erwan Bocher ◽  
Gwenaël Guillaume ◽  
Judicaël Picaut ◽  
Gwendall Petit ◽  
Nicolas Fortin

The urbanisation phenomenon and related cities expansion and transport networks entail preventing the increase of population exposed to environmental pollution. Regarding noise exposure, the Environmental Noise Directive demands on main metropolis to produce noise maps. While based on standard methods, these latter are usually generated by proprietary software and require numerous input data concerning, for example, the buildings, land use, transportation network and traffic. The present work describes an open source implementation of a noise mapping tool fully implemented in a Geographic Information System compliant with the Open Geospatial Consortium standards. This integration makes easier at once the formatting and harvesting of noise model input data, cartographic rendering and output data linkage with population data. An application is given for a French city, which consists in estimating the impact of road traffic-related scenarios in terms of population exposure to noise levels both in relation to a threshold value and level classes.


2020 ◽  
Author(s):  
Martin O. P. Ramacher ◽  
Lin Tang ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Shipping is an important source of air pollutants, from the global to the local scale. Ships are emitting substantial amounts of sulphur dioxides, nitrogen dioxides and particulate matter in the vicinity of coasts, threatening the health of the coastal population, especially in harbour cities. Reductions of emissions due to shipping have been targeted by several regulations. Nevertheless, effects of these regulations come into force with temporal delays, global ship traffic is expected to grow in the future, and other land-based anthropogenic emissions might decrease. Thus, it is necessary to investigate combined impacts to identify the impact of shipping activities on air quality, population exposure and health-effects in the future. We investigated the future effect of shipping emissions on air quality and related health effects considering different scenarios of the development of shipping under current regional trends of economic growth and already decided regulations in the Gothenburg urban area in 2040. Additionally, we investigated the impact of a large-scale implementation of shore electricity in the port of Gothenburg. For this purpose, we established a one-way nested chemistry transport modelling (CTM) system from the global to the urban scale, to calculate pollutant concentrations, population weighted concentrations and health-effects related to NO2, PM2.5 and O3. The simulated concentrations of NO2 and PM2.5 in future scenarios for the year 2040 are in general very low with up to 4 ppb for NO2 and up to 3.5 µg/m3 PM2.5 in the urban areas which are not close to the port area. From 2012 the simulated overall exposure to PM2.5 decreased by approximately 30 % in simulated future scenarios, for NO2 the decrease was over 60 %. The simulated concentrations of O3 increased from year 2012 to 2040 by about 20 %. In general, the contributions of local shipping emissions in 2040 focus on the harbour area but to some extent also influence the rest of the city domain. The simulated impact of wide use of shore-site electricity for shipping in 2040 shows reductions for NO2 in the port with up to 30 %, while increasing O3 of up to 3 %. Implementation of on-shore electricity for ships at berth leads to additional local reduction potentials of up to 3 % for PM2.5 and 12 % for SO2 in the port area. All future scenarios show substantial decreases in population weighted exposure and health-effect impacts.


2021 ◽  
Vol 263 (2) ◽  
pp. 4581-4591
Author(s):  
Keishi Sakoda ◽  
Ichro Yamada ◽  
Kenji Shinohara

The authors have developed a sound direction detection method based on the cross-correlation method and applied it to automatic monitoring of aircraft noise and identification of sound sources. As aircraft performance improves, noise decreases, and people are interested in and dissatisfied with low-level noise aircraft, especially in urban areas where environmental noise and aircraft noise combine to complicate the acoustic environment. Therefore, it is necessary to monitor and to measure not only aircraft noise but also environmental noise. Since our surveillance is aircraft noise, it is important to analyze noise exposure from acoustic information rather than trucks or images. In this report, we will look back on the development process of this sound direction detection technology, show examples of helicopters and application examples of acoustic scene analysis to high-altitude aircraft, and consider the latest situation realized as acoustic environment monitoring. We believe that this analysis will make it easier to understand the noise exposure situation at the noise monitoring station. It also describes the future outlook for this method.


2019 ◽  
Vol 8 (3) ◽  
pp. 130 ◽  
Author(s):  
Erwan Bocher ◽  
Gwenaël Guillaume ◽  
Judicaël Picaut ◽  
Gwendall Petit ◽  
Nicolas Fortin

The urbanisation phenomenon and related cities expansion and transport networks entail preventing the increase of population exposed to environmental pollution. Regarding noise exposure, the Environmental Noise Directive demands on main metropolis to produce noise maps. While based on standard methods, these latter are usually generated by proprietary software and require numerous input data concerning, for example, the buildings, land use, transportation network and traffic. The present work describes an open source implementation of a noise mapping tool fully implemented in a Geographic Information System compliant with the Open Geospatial Consortium standards. This integration makes easier at once the formatting and harvesting of noise model input data, cartographic rendering and output data linkage with population data. An application is given for a French city, which consists in estimating the impact of road traffic-related scenarios in terms of population exposure to noise levels in relation to both a threshold value and level classes.


2021 ◽  
Vol 263 (1) ◽  
pp. 5114-5124
Author(s):  
Thulan Nguyen ◽  
Tran Thi Hong Nhung Nguyen ◽  
Bach Lien Trieu ◽  
Makoto Morinaga ◽  
Yasuhiro Hiraguri ◽  
...  

The travel restrictions caused by the epidemic outbreak in early 2020 worldwide have caused many changes in all aspects of life, especially in the acoustic environment. This study examines the impact of this environmental change at Tan Son Nhat International Airport (TSN), the largest airport in Vietnam, by comparing the situations before and after the airport stopped operating all international flights in March 2020. The after-the-change survey was conducted in 2 phases, June and September 2020, three months and six months after the stop decision. The number of flights observed in August 2019 was 728; this number is 413 and 299 for the two surveys in 2020. The range of noise levels estimated for 12 sites around TSN decreased from 63-81 dB in 2019 to 32-67 dB in June 2020 and 33-69 dB in September 2020. At the same aircraft noise level, the percentage of highly annoyed (% HA) and the percentage of insomnia (%ISM) in the 2020 survey are higher than those in the 2019 survey. The comparison results of reaction to noise before and after the TSN's noise change indicated an increase in negative responses to noise might happen in the increased noise and reduced noise situation.


Noise Mapping ◽  
2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Itziar Aspuru ◽  
Igone Garcia ◽  
Chiara Bartalucci ◽  
Francesco Borchi ◽  
Monica Carfagni ◽  
...  

AbstractConcerning quiet areas, the definition provided by the Environmental Noise Directive (END) is intended to preserve the acoustic environment in those areas where it is considered good, according to general indicators and limits. However, the END is not clear enough to allow appropriate assessment and management in urban environments. The aim of QUADMAP project was to deliver a method and guidelines for the identification, delineation, characterization, improvement and management of Quiet Urban Areas (QUAs) as defined by the END. The Project also wanted to help clarify the definition of a QUA, its meaning and its added value for cities in terms of health, safety and lowering stress levels. In this article, after an introduction of the current European scenario on QUAs, the main aspects of the methodology introduced for the selection, analysis and management of QUAs are described. Eventually, the major results achieved by the Project, in terms of the guideline on QUAs, the implemented interventions and the achieved benefits, are reported and discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Francesc Alías ◽  
Rosa Ma. Alsina-Pagès

Nowadays, more than half of the world’s population lives in urban areas. Since this proportion is expected to keep rising, the sustainable development of cities is of paramount importance to guarantee the quality of life of their inhabitants. Environmental noise is one of the main concerns that has to be addressed, due to its negative impact on the health of people. Different national and international noise directives and legislations have been defined during the past decades, which local authorities must comply with involving noise mapping, action plans, policing, and public awareness, among others. To this aim, a recent change in the paradigm for environmental noise monitoring has been driven by the rise of Internet of Things technology within smart cities through the design and development of wireless acoustic sensor networks (WASNs). This work reviews the most relevant WASN-based approaches developed to date focused on environmental noise monitoring. The proposals have moved from networks composed of high-accuracy commercial devices to the those integrated by ad hoc low-cost acoustic sensors, sometimes designed as hybrid networks with low and high computational capacity nodes. After describing the main characteristics of recent WASN-based projects, the paper also discusses several open challenges, such as the development of acoustic signal processing techniques to identify noise events, to allow the reliable and pervasive deployment of WASNs in urban areas together with some potential future applications.


Noise Mapping ◽  
2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Francesco Aletta ◽  
Jian Kang

AbstractIn the guidelines about the management of areas of good environmental noise quality recently published by the European Environment Agency (EEA) it is suggested to combine different methodologies, like noise mapping, sound level measurements and the soundscape approach. Such a recommendation has started to be recognised by a number of local authorities in Europe that are gradually integrating a holistic concept into their environmental noise policies. This research aimed to explore and demonstrate the possibility to integrate conventional noise mapping methods and soundscape methods in an actual urban redevelopment project. A case study was made using the Valley Gardens project in Brighton & Hove (UK). Different scenarios of sound-pressure level distributionswere simulated for both traffic sound sources (i.e. noise maps) and natural sound sources (i.e. sound maps). Additionally, individual responses about the sound environment of the place collected during an on-site question survey were used to implement soundscape maps.The overall picture revealed that the road traffic noise should be reduced, but also it is feasible that preferred sounds likewater features or birdsong could be introduced to make the sound environment more appropriate for the place. Generally, within the framework of this research, noise maps, sound maps and soundscape maps were used together to "triangulate" different layers of information related to the acoustic environment and the way it is perceived, providing a possible working procedure to consider for planners and policy-makers in the future.


Sign in / Sign up

Export Citation Format

Share Document