scholarly journals Caribou Conservation: Restoring Trees on Seismic Lines in Alberta, Canada

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 185 ◽  
Author(s):  
Angelo Filicetti ◽  
Michael Cody ◽  
Scott Nielsen

Seismic lines are narrow linear (~3–8 m wide) forest clearings that are used for petroleum exploration in Alberta’s boreal forest. Many seismic lines have experienced poor tree regeneration since initial disturbance, with most failures occurring in treed peatlands that are used by the threatened woodland caribou (Rangifer tarandus caribou). Extensive networks of seismic lines, which often reach densities of 40 km/km2, are thought to have contributed to declines in caribou. The reforestation of seismic lines is therefore a focus of conservation. Methods to reforest seismic lines are expensive (averaging $12,500 per km) with uncertainty of which seismic lines need which treatments, if any, resulting in inefficiencies in restoration actions. Here, we monitored the effectiveness of treatments on seismic lines as compared to untreated seismic lines and adjacent undisturbed reference stands for treed peatlands in northeast Alberta, Canada. Mechanical site preparation (mounding and ripping) increased tree density when compared to untreated lines, despite averaging 3.8-years since treatment (vs. 22 years since disturbance for untreated). Specifically, treated lines had, on average, 12,290 regenerating tree stems/ha, which is 1.6-times more than untreated lines (7680 stems/ha) and 1.5-times more than the adjacent undisturbed forest (8240 stems/ha). Using only mechanical site preparation, treated seismic lines consistently have more regenerating trees across all four ecosites, although the higher amounts of stems that were observed on treated poor fens are not significant when compared to untreated or adjacent undisturbed reference stands.

Rangifer ◽  
2000 ◽  
Vol 20 (5) ◽  
pp. 85 ◽  
Author(s):  
Kimberley G. Brown ◽  
Campbell Elliott ◽  
Francois Messier

Woodland caribou (Rangifer tarandus caribou) in the boreal forest are believed threatened by human encroachment and associated disturbances such as resource exploration and extraction. We radiocollared and monitored fifteen female woodland caribou in central Manitoba, from 1995 to 1997, to obtain information on their population range, seasonal distribution and movements in relation to forestry concerns. The population ranged over 4600 km2 within a large peatland system and concentrated their activities in two areas for both the summer and winter seasons. Females were relatively more solitary during the summer and exhibited fidelity to specific calving and summering areas averaging 83.4 km2. Individual wintering locations varied between years and among individuals. Post-rut and pre-calving mixed-sex aggregations occurred on the southern portion of the herds range. Caribou from the northern part of the range utilized a traditional travel corridor moving as far as 65 km to access the aggregation areas and their summer or winter ranges. Adult survival during the study period averaged 0.90 (95% CI, 0.80-1.00). Survival of the 1995 cohort appeared to be high as indicated by the 0.65:1 calf-cow ratio, and 30 ± 7% calf composition of observed caribou in the autumn of 1995. The annual rate of change (A,) of 1.19 (95% CI, 1.02-1.36) from January to November of 1995 indicated rhat the population was increasing at that time.


Geoderma ◽  
2009 ◽  
Vol 149 (3-4) ◽  
pp. 386-392 ◽  
Author(s):  
Sirpa Piirainen ◽  
Leena Finér ◽  
Hannu Mannerkoski ◽  
Michael Starr

2015 ◽  
Vol 91 (02) ◽  
pp. 187-196 ◽  
Author(s):  
Mohammed Henneb ◽  
Osvaldo Valeria ◽  
Nicole J. Fenton ◽  
Nelson Thiffault ◽  
Yves Bergeron

Paludification is the accumulation of partially decomposed organic matter over saturated mineral soils. It reduces tree regeneration and growth, mainly because of low temperatures and high water content in the rooting zone, reduced organic matter decomposition, and hence, low nutrient availability. On the Clay Belt of western Québec and eastern Ontario, forests tend to paludify naturally but this process might be promoted by logging methods. Our objective was to identify which of two commonly used mechanical site preparation (MSP) techniques is best adapted to reduce organic layer thickness (OLT) and generate favourable planting microsites post-harvest in paludified sites. Nine experimental blocks (between 20 ha–61 ha each) were delimited within a 35 km2 forest sector with variable levels of paludification. The forest sector was harvested by careful logging to protect advance growth and soils and subsequently the nine experimental blocks were treated with either forest harrowing, disc trenching (T26) or left as untreated controls (harvesting only) with three replicate blocks per treatment. We measured OLT before and after MSP and determined planting microsite quality within each block. Results revealed significant differences in OLT between MSP treatments and harvesting only. Overall, harrowing was the best technique, as it reduced OLT more than T26 scarification and generated the highest percent of good microsites, except where initial OLT was 44 cm–56 cm. Our results contribute to the successful use of MSP in paludified forests.


1996 ◽  
Vol 76 (4) ◽  
pp. 531-540 ◽  
Author(s):  
M. G. Schmidt ◽  
S. E. Macdonald ◽  
R. L. Rothwell

We examined the impacts of harvesting and mechanical site preparation (MSP) on soil chemical properties of mixed-wood boreal forest sites in west central Alberta. Treatments included: 1) disc trencher, hinge, and trench microsites; 2) ripper plow, hinge, and trench microsites; 3) blading thin (organic layer depth < 2 cm), and thick (organic layer depth > 2 cm) microsites; 4) harvested with no site preparation; and 5) unharvested. Twenty months after harvesting, the forest floor of harvested areas with no MSP (vs. unharvested) had higher carbon:nitrogen ratios lower pH, and lower concentrations of total and mineralizable nitrogen, available phosphorus, and exchangeable bases Fifteen months after MSP, treated areas had either reduced or unchanged concentrations of total nitrogen and carbon, available phosphorus, and mineralizable nitrogen in the surface mineral soil, compared with harvested sites with no site preparation. The MSP-treated areas also had increased or unchanged pH, base saturation, and exchangeable base concentrations. Microsites adjacent to the displaced forest floor (hinge for disc and ripper treatments) or with a thicker organic layer (thick for blading) generally had higher concentrations of total nitrogen and carbon, and mineralizable nitrogen in the surface mineral soil as compared to trench and thin microsites. Key words: Forest soils, mechanical site preparation, harvesting, N, P, mixed-wood boreal forest


2017 ◽  
Vol 47 (7) ◽  
pp. 926-934 ◽  
Author(s):  
Nelson Thiffault ◽  
François Hébert

Sustainable forest management implies successful regeneration following disturbances. Tree regeneration in subarctic ecosystems can, however, be constrained by limitations to seedling establishment related to cold soils, slow decomposition rates, and competition by ericaceous species. We established a field trial at the northern limit of commercial forests in Québec, Canada, to evaluate to what extent mechanical site preparation (MSP) and planting of a nurse N2-fixing species could promote conifer establishment on a site burned in 2007. The experiment comprised four treatments applied in 2010: standard MSP (disc trenching), standard MSP plus planting of Alnus crispa, intensive MSP, with larger furrows than standard MSP, and a control. Main plots were divided and planted in 2011 with Picea mariana (Mill.) Britton, Stearns & Poggenb. or Pinus banksiana Lamb. We monitored seedling survival, growth, nutrition, and microsite over a 3-year period. Results revealed interactions between treatments and planted species. Mechanical site preparation resulted in higher conifer growth relative to the control conditions, and planting Alnus resulted in growth gains similar to those obtained from intensive MSP. We measured competitive interactions between Alnus and the conifers that might eventually cancel out the initial benefits derived from facilitation by planting the nurse species. Longer term monitoring of interspecific interactions is needed to unravel the mechanisms responsible for the facilitative effect and identify the best management practices.


Ecosystems ◽  
2021 ◽  
Author(s):  
Theresa S. Ibáñez ◽  
David A. Wardle ◽  
Michael J. Gundale ◽  
Marie-Charlotte Nilsson

AbstractWildfire disturbance is important for tree regeneration in boreal ecosystems. A considerable amount of literature has been published on how wildfires affect boreal forest regeneration. However, we lack understanding about how soil-mediated effects of fire disturbance on seedlings occur via soil abiotic properties versus soil biota. We collected soil from stands with three different severities of burning (high, low and unburned) and conducted two greenhouse experiments to explore how seedlings of tree species (Betula pendula, Pinus sylvestris and Picea abies) performed in live soils and in sterilized soil inoculated by live soil from each of the three burning severities. Seedlings grown in live soil grew best in unburned soil. When sterilized soils were reinoculated with live soil, seedlings of P. abies and P. sylvestris grew better in soil from low burn severity stands than soil from either high severity or unburned stands, demonstrating that fire disturbance may favor post-fire regeneration of conifers in part due to the presence of soil biota that persists when fire severity is low or recovers quickly post-fire. Betula pendula did not respond to soil biota and was instead driven by changes in abiotic soil properties following fire. Our study provides strong evidence that high fire severity creates soil conditions that are adverse for seedling regeneration, but that low burn severity promotes soil biota that stimulates growth and potential regeneration of conifers. It also shows that species-specific responses to abiotic and biotic soil characteristics are altered by variation in fire severity. This has important implications for tree regeneration because it points to the role of plant–soil–microbial feedbacks in promoting successful establishment, and potentially successional trajectories and species dominance in boreal forests in the future as fire regimes become increasingly severe through climate change.


1998 ◽  
Vol 22 (4) ◽  
pp. 222-226 ◽  
Author(s):  
W. Michael Aust ◽  
James A. Burger ◽  
William H. McKee ◽  
Gregory A. Scheerer ◽  
Mark D. Tippett

Abstract Wet-weather harvesting operations on wet pine fiats can cause soil disturbances that may reduce long-term site productivity. Site preparation and fertilization are often recommended as ameliorative practices for such disturbances, but few studies have actually quantified their effects on restoration. The purposes of this study were to quantify the effects of wet-weather harvest traffic in designated skid trails on soil properties and loblolly pine (Pinus taeda) growth, and to evaluate the ameliorative effects of site preparation. Study sites were established on wet pine flats of the lower Coastal Plain within the Francis Marion National Forest (Berkeley County, SC). Treatments were arranged in a split-split plot within a randomized complete block design. Treatments were two levels of traffic (nontrafficked, trafficked), four levels of mechanical site preparation (none, disking, bedding, disking + bedding), and two levels of fertilization (none, 337 kg /ha of 10-10-10 fertilizer). initially, the trafficking increased soil bulk densities and reduced soil water movement and subsequent growth of loblolly pine (years 1 and 2). Bedding combined with fertilization restored site productivity to non trafficked levels within 4 yr, but disking or fertilization treatments alone were not effective at ameliorating the traffic effects. The effectiveness of the bedding and fertilization treatments for amelioration of traffic effects was probably facilitated by the relatively small area of disturbed skid trails (<10%) found on these sites. Areas having more severe disturbance or higher percentages of disturbance might not be ameliorated as rapidly. South. J. Appl. For. 22(4):222-226.


Sign in / Sign up

Export Citation Format

Share Document