scholarly journals Response Characteristics of Chinese Pine (Pinus tabulaeformis Carr.) Radial Growth to Climate and Drought Variability Reconstruction in Western Liaoning, Northeast China

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 752
Author(s):  
Liu ◽  
Bao ◽  
Bao

Chinese pine (Pinus tabulaeformis Carr.) plays an important role in maintaining ecosystem health and stability in western Liaoning Province and the southern Horqin sand land, Northeast China, with benefits including sand fixation and soil erosion. In the context of climate change, developing a better understanding of the relationship between climate factors and growth rates of this species will be extremely valuable in guiding management activities and meeting regional conservation objectives. Here, the results based on two groups of tree-ring samples show that the radial growth of Chinese pine is controlled primarily by water conditions. The longer chronology had the highest correlation coefficient with the January–September mean self-calibrating Palmer Drought Severity Index (scPDSI); therefore, drought variability was reconstructed for the period 1859–2014. Statistical analysis showed that our model explained 41.9% of the variance in radial growth during the 1951–2014 calibration period. Extreme dry and wet events, defined as the criteria of one standard deviation less or greater than the mean value, accounted for 19.9% and 18.6% of the 156-year climate record, respectively. During the past century, the regional hydroclimate experienced significant long-term fluctuations. The dry periods occurred from the early-1900s–1930s and 1980s–2000s, and the wet periods occurred from the 1940s–1970s. The drought reconstruction was consistent with the decreasing trend of the East Asian summer monsoon since the late 1970s. The reconstructed temporal patterns in hydroclimate in western Liaoning were closely related to the large-scale climate drivers in the North Pacific and the tropical equatorial Pacific. The teleconnections were confirmed by spatial correlations between the reconstructed sequence and sea surface temperature (SST) in the North Pacific, as well as the correlations with the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) indices. Aerosols played an important role in affecting drought variations over the past several decades. Moisture stress caused by global warming and interdecadal changes in the PDO will have long-term effects on the growth of pines in the study area in the future.

Radiocarbon ◽  
2001 ◽  
Vol 43 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Ellen R M Druffel ◽  
S Griffin ◽  
T P Guilderson ◽  
M Kashgarian ◽  
J Southon ◽  
...  

We show that high-precision radiocarbon (Δ14C) measurements from annual bands of a Hawaiian surface coral decreased by 7‰ from AD 1893 to 1952. This decrease is coincident with the Suess Effect, which is mostly due to the dilution of natural levels of 14C by 14C-free fossil fuel CO2. This decrease is equal to that expected in surface waters of the subtropical gyres, and indicates that the surface waters of the North Pacific were in steady state with respect to long term mixing of CO2 during the past century. Correlation between Δ14C and North Pacific gyre sea surface temperatures indicates that vertical mixing local to Hawaii and the North Pacific gyre as a whole is the likely physical mechanism to result in variable Δ14C. Prior to 1920, this correlation starts to break down; this may be related to the non-correlation between biennial Δ14C values in corals from the southwest Pacific and El Niño events observed during this period as well.


2021 ◽  
pp. 1-38
Author(s):  
Xi Guo ◽  
James P. Kossin ◽  
Zhe-Min Tan

AbstractTropical cyclone (TC) translation speed (TCTS) can affect the duration of TC-related disasters, which is critical to coastal and inland areas. The long-term variation of TCTS and their relationship to the variability of the mid-latitude jet stream and storm migration are discussed here for storms near the North Atlantic coast during 1948-2019. Our results reveal the prominent seasonality in the long-term variation of TCTS, which can be largely explained by the seasonality in the covariations of the mid-latitude jet stream and storm locations. Specifically, significant increases of TCTS occur in June and October during the past decades, which may result from the equatorward displacement of the jet stream and poleward migration of storm locations. Prominent slowdown of TCTS is found in August, which is related to the weakened jet strength and equatorward storm migration. In September, the effects of poleward displacement and weakening of the jet stream on TCTS are largely compensated by the poleward storm migration, therefore, no significant change in TCTS is observed. Meanwhile, the multidecadal variability of the Atlantic may contribute to the multidecadal variability of TCTS. Our findings emphasize the significance in taking a seasonality view in discussing the variability and trends of near-coast Atlantic TCTS under climate change.


2020 ◽  
Vol 33 (16) ◽  
pp. 6833-6848
Author(s):  
Tingting Han ◽  
Minghua Zhang ◽  
Botao Zhou ◽  
Xin Hao ◽  
Shangfeng Li

AbstractThe relationship between the tropical west Pacific (TWP) and East Asian summer monsoon/precipitation has been documented in previous studies. However, the stability for the signals of midsummer precipitation in the TWP sea surface temperature (SST_TWP), which is important for climate variation, has drawn little attention. This study identifies a strengthened relationship between the leading empirical orthogonal function mode (EOF1) of midsummer precipitation over Northeast China (NEC) and the SST_TWP after the mid-1990s. The EOF1 mode shows a significant positive correlation with the SST_TWP for 1996–2016, whereas the relationship is statistically insignificant for 1961–90. Further results indicate that the North Pacific multidecadal oscillation (NPMO) shifts to a positive phase after the 1990s. In the positive NPMO phase, the anomalous circulation over the northeast Pacific expands westward over the central North Pacific–Aleutian Islands region. Concurrently, the SST_TWP-associated wavelike pattern propagates northeastward from the west Pacific to the northwest Pacific and farther to the North Pacific, facilitating the poleward expansion and intensification of the SST_TWP-related circulation anomalies over the North Pacific. Therefore, the SST_TWP has an enhanced influence on NEC precipitation through the modulation of the circulation anomalies over the central North Pacific–Aleutian Islands region after the mid-1990s. Additionally, the tropical anticyclone/cyclone associated with the SST_TWP expands westward to South China, exerting an intensified impact on meridional wind anomalies along eastern China and on moisture transport over NEC. These conditions jointly contribute to the strengthened relationship between the SST_TWP and the EOF1 mode of NEC midsummer precipitation after the mid-1990s.


Science ◽  
2014 ◽  
Vol 346 (6213) ◽  
pp. 1102-1106 ◽  
Author(s):  
Il-Nam Kim ◽  
Kitack Lee ◽  
Nicolas Gruber ◽  
David M. Karl ◽  
John L. Bullister ◽  
...  

The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (∼0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.


2020 ◽  
Author(s):  
Zhongshi Zhang ◽  
Qing Yan ◽  
Ran Zhang ◽  
Florence Colleoni ◽  
Gilles Ramstein ◽  
...  

<p>Did a Beringian ice sheet once exist? This question was hotly debated decades ago until compelling evidence for an ice-free Wrangel Island excluded the possibility of an ice sheet forming over NE Siberia-Beringia during the Last Glacial Maximum (LGM). Today, it is widely believed that during most Northern Hemisphere glaciations only the Laurentide-Eurasian ice sheets across North America and Northwest Eurasia became expansive, while Northeast Siberia-Beringia remained ice-sheet-free. However, recent recognition of glacial landforms and deposits on Northeast Siberia-Beringia and off the Siberian continental shelf has triggered a new round of debate.These local glacial features, though often interpreted as local activities of ice domes on continental shelves and mountain glaciers on continents,   could be explained as an ice sheet over NE Siberia-Beringia. Only based on the direct glacial evidence, the debate can not be resolved. Here, we combine climate and ice sheet modelling with well-dated paleoclimate records from the mid-to-high latitude North Pacific to readdress the debate. Our simulations show that the paleoclimate records are not reconcilable with the established concept of Laurentide-Eurasia-only ice sheets. On the contrary, a Beringian ice sheet over Northeast Siberia-Beringia causes feedbacks between atmosphere and ocean, the result of which well explains the climate records from around the North Pacific during the past four glacial-interglacial cycles. Our ice-climate modelling and synthesis of paleoclimate records from around the North Pacific argue that the Beringian ice sheet waxed and waned rapidly in the past four glacial-interglacial cycles and accounted for ~10-25 m ice-equivalent sea-level change during its peak glacials. The simulated Beringian ice sheet agrees reasonably with the direct glacial and climate evidence from Northeast Siberia-Beringia, and reconciles the paleoclimate records from around the North Pacific. With the Beringian ice sheet involved, the pattern of past NH ice sheet evolution is more complex than previously thought, in particular prior to the LGM.</p>


Sign in / Sign up

Export Citation Format

Share Document