scholarly journals Morphology, DNA Phylogeny, and Pathogenicity of Wilsonomyces carpophilus Isolate Causing Shot-Hole Disease of Prunus divaricata and Prunus armeniaca in Wild-Fruit Forest of Western Tianshan Mountains, China

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 319
Author(s):  
Shuanghua Ye ◽  
Haiying Jia ◽  
Guifang Cai ◽  
Chengming Tian ◽  
Rong Ma

Prunus divaricata and Prunus armeniaca are important wild fruit trees that grow in part of the Western Tianshan Mountains in Central Asia, and they have been listed as endangered species in China. Shot-hole disease of stone fruits has become a major threat in the wild-fruit forest of the Western Tianshan Mountains. Twenty-five isolates were selected from diseased P. divaricata and P. armeniaca. According to the morphological characteristics of the culture, the 25 isolates were divided into eight morphological groups. Conidia were spindle-shaped, with ovate apical cells and truncated basal cells, with the majority of conidia comprising 3–4 septa, and the conidia had the same shape and color in morphological groups. Based on morphological and cultural characteristics and multilocus analysis using the internal transcribed spacer (ITS) region, partial large subunit (LSU) nuclear ribosomal RNA (nrRNA) gene, and the translation elongation factor 1-alpha (tef1) gene, the fungus was identified as Wilsonomyces carpophilus. The 25 W. carpophilus isolates had high genetic diversity in phylogenetic analysis, and the morphological groups did not correspond to phylogenetic groups. The pathogenicity of all W. carpophilus isolates was confirmed by inoculating healthy P. divaricata and P. armeniaca leaves and fruits. The pathogen was re-isolated from all inoculated tissues, thereby fulfilling Koch’s postulates. There were no significant differences in the pathogenicity of different isolates inoculated on P. armeniaca and P. divaricata leaves (p > 0.05). On fruit, G053 7m3 and G052 5m2 showed significant differences in inoculation on P. armeniaca, and G010 5m2 showed extremely significant differences with G004 7m2 and G004 5m2 on P. divaricata (p < 0.05). This is the first report on shot-hole disease of P. armeniaca (wild apricot) leaves and P. divaricata induced by W. carpophilus in China.

Plant Disease ◽  
2021 ◽  
Author(s):  
Xiulan Xu ◽  
Si-yi Liu ◽  
Yicong Lv ◽  
Qian Zeng ◽  
Yinggao Liu ◽  
...  

Photinia × fraseri is a well-known green plant mainly distributed in the Yangtze River and Yellow River Basin, east and southwest of China (Guan et al. 2013). In October 2020, typical leaf blight symptoms on roughly 10% leaves in a Photinia × fraseri shrub were observed in the campus of Sichuan Agricultural University (30°42′19″ N, 103°51′29″ E). Initially, chlorotic lesions with brown margins occurred on the leaf margin, then the large patches formed to cause leaves necrotic, finally lesions to dry and acervulus bred in 2–4 months later. Five single conidium isolates were carried out (Chomnunti et al. 2014) cultured on potato dextrose agar (PDA) at 25 ℃. All isolates shared similarly morphological characteristics, which was white and thin, and the reverse were yellowish. Mycelium was hyaline, sparsely septate, measuring 1–4 μm in diam. Conidiogenesis formed after 7 days. Conidiogenous cells were discrete, lageniform, smooth, thin-walled, colorless. Conidia were fusiform, straight to slightly curved, 4-septate, 21–30 × 5–7 μm (x ̅= 27 × 6.0 μm, n=30); basal cells were obconic with truncate base, hyaline, thin- and smooth-walled, 4–7 μm long (x ̅= 5.5 μm, n=30); three median cells were doliiform with thick walls, concolorous, olivaceous, constricted at the septa, and septa and periclinal walls were darker than the rest of the cell, 14–20 μm long (x ̅= 17 μm, n=30); apical cells were hyaline, conic to cylindrical, 3.0–6.5 μm long (x ̅= 4.5 μm, n=30), with 2–4 (mostly 3) tubular apical appendages arising from the upper portion, rarely branched, 7.5–18 μm long (x ̅= 12 μm, n=50); basal appendage was single, unbranched, 3–10 μm long (x ̅= 6.5 μm, n=30). DNA was extracted from the representative strain (SICAUCC 21-0012), and the internal transcribed spacer (ITS) region, the large subunit of the nrDNA (LSU), translation elongation factor 1-alpha (tef1-α), and partial sequences of β-tubulin (tub2) were amplified by polymerase chain reaction and sequenced with primers ITS5/ITS4, LR0R/LR5, 728F/1567R, and Bt2a/Bt2b, respectively (Zhang et al. 2012, Ariyawansa & Hyde 2018). The sequences were deposited in GenBank, viz. MZ453106, MZ453108, MZ467300, MZ467301, respectively. The nucleotide blast showed 99% (ITS, 0 gaps), 100% (tub2, 0 gaps), 100% (tef1-α, 0 gaps) identities with the ex-type Pestalotiopsis trachicarpicola Yan M. Zhang & K. D. Hyde (IFRDCC 2440). The fungus was identified as P. trachicarpicola combined with phylogeny and morphology (Maharachchikumbura et al. 2012, Zhang et al. 2012). To conduct Koch’s postulates, five healthy 6-year-old P. × fraseri were inoculated with 10 µl spore suspension (106 conidia/ml) onto the wounded sites (five leaves per plant, ~1 to 2 years old) via sterile pin, and five healthy plants treated with sterile dH2O as controls (Yang et al. 2021). The plants were placed in a greenhouse at 25°C with relative humidity >80%. After 2 months, leaf blight symptoms gradually emerged on inoculated leaves, and the controls were symptomless. Fungal isolates from symptomatic plants showed similar morphological characteristics as SICAUCC 21-0012, and the pathogen was not isolated from asymptomatic plants. To our knowledge, this is the first report of leaf blight caused by P. trachicarpicola on Photinia × fraseri in China. Disease management should be adopted properly to restore and improve its ornamental value.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen-Wen Li ◽  
Li-Qiang Liu ◽  
Qiu-Ping Zhang ◽  
Wei-Quan Zhou ◽  
Guo-Quan Fan ◽  
...  

AbstractTo clarify the phytogeography of Prunus armeniaca L., two chloroplast DNA fragments (trnL-trnF and ycf1) and the nuclear ribosomal DNA internal transcribed spacer (ITS) were employed to assess genetic variation across 12 P. armeniaca populations. The results of cpDNA and ITS sequence data analysis showed a high the level of genetic diversity (cpDNA: HT = 0.499; ITS: HT = 0.876) and a low level of genetic differentiation (cpDNA: FST = 0.1628; ITS: FST = 0.0297) in P. armeniaca. Analysis of molecular variance (AMOVA) revealed that most of the genetic variation in P. armeniaca occurred among individuals within populations. The value of interpopulation differentiation (NST) was significantly higher than the number of substitution types (GST), indicating genealogical structure in P. armeniaca. P. armeniaca shared genotypes with related species and may be associated with them through continuous and extensive gene flow. The haplotypes/genotypes of cultivated apricot populations in Xinjiang, North China, and foreign apricot populations were mixed with large numbers of haplotypes/genotypes of wild apricot populations from the Ili River Valley. The wild apricot populations in the Ili River Valley contained the ancestral haplotypes/genotypes with the highest genetic diversity and were located in an area considered a potential glacial refugium for P. armeniaca. Since population expansion occurred 16.53 kyr ago, the area has provided a suitable climate for the population and protected the genetic diversity of P. armeniaca.


Phytotaxa ◽  
2015 ◽  
Vol 197 (4) ◽  
pp. 267-281 ◽  
Author(s):  
Qian Chen ◽  
KE ZHANG ◽  
GUOZHEN ZHANG ◽  
LEI CAI

Phoma odoratissimi sp. nov. on Viburnum odoratissimum and Syringa oblate, and Phoma segeticola sp. nov. on Cirsium segetum from China are introduced and described, employing a polyphasic approach characterising morphological characteristics, host association and phylogeny. Both species are the first records of Phoma species on their respective hosts. Multi-locus phylogenetic tree was inferred using combined sequences of the internal transcribed spacer regions 1 & 2 and 5.8S nrDNA (ITS), and partial large subunit 28S nrDNA region (LSU), β-tubulin (TUB) region and RNA polymerase II (RPB2) region. The two new species clustered in two separate and distinct lineages, and are distinct from their allied species.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1531
Author(s):  
Xu Lu ◽  
Haisheng Yuan

Species in the genus Tomentella are distributed throughout the temperate and tropical regions worldwide, but few studies associated with the taxonomy and phylogeny of this genus had been reported from Northwest China. In this paper, molecular phylogenetic analyses of the nuclear ribosomal ITS (internal transcribed spacer: ITS1-5.8S-ITS2) and LSU (large subunit: 28S) sequences combined with morphological characteristics identified three new species from Xinjiang Autonomous Region in Northwest China, which were named T. aurantispora, T. kanasensis, and T. schrenkiana. Similar macromorphological and anatomical characteristics are shared by these new species: arachnoid basidiocarps; byssoid sterile margins; utriform basidia with a clamp connection at the base; the absence of rhizomorphs and cystidia; and slightly thick-walled, subglobose to globose basidiospores. Among these new species, the color of the hymenophoral surface, the size of the basidiospores, and some other features can be used for species delimitation. The new species and closely related species in the phylogenetic tree were discussed, and a key to the identified species of Tomentella from China was provided.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2668
Author(s):  
Zahid Nabi Sheikh ◽  
Vikas Sharma ◽  
Rafiq Ahmad Shah ◽  
Shilpa Raina ◽  
Maha Aljabri ◽  
...  

Apricot (Prunus armeniaca L.) is an important temperate fruit crop worldwide. The availability of wild apricot germplasm and its characterization through genomic studies can guide us towards its conservation, increasing productivity and nutritional composition. Therefore, in this study, we carried out the genomic characterization of 50 phenotypically variable accessions by using SSR markers in the erstwhile States of Jammu and Kashmir to reveal genetic variability among accessions and their genetic associations. The genetic parameter results revealed that the number of alleles per locus (Na) ranged from 1 to 6 with a mean Na value of 3.89 and the mean effective number of alleles (Ne) per locus 1.882 with a range of 1.22 to 2. Similarly, the polymorphic information content (PIC) values ranged from 0.464 to 0.104. The observed heterozygosity (Ho) (0.547) was found to have higher than expected heterozygosity (He) (0.453) with average heterozygosity of 0.4483. The dendrogram clustered genotypes into three main clades based on their pedigree. The population structure revealed IV sub-populations with all admixtures except the III sub-population, which was mainly formed of exotic cultivars. The average expected heterozygosity (He) and population differentiation within four sub-populations was 1.78 and 0.04, respectively, and explained 95.0% of the total genetic variance in the population. The results revealed that the SSR marker studies could easily decrypt the genetic variability present within the germplasm, which may form the base for the establishment of good gene banks by reducing redundancy of germplasm, selection of parents for any breeding program.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jun Guo ◽  
Jin Chen ◽  
Zhao Hu ◽  
Jie Zhong ◽  
Jun Zi Zhu

Cardamine hupingshanensis is a selenium (Se) and cadmium (Cd) hyperaccumulator plant distributed in wetlands along the Wuling Mountains of China (Zhou et al. 2018). In March of 2020, a disease with symptoms similar to gray mold was observed on leaves of C. hupingshanensis in a nursery located in Changsha, Hunan Province, China. Almost 40% of the C. hupingshanensis (200 plants) were infected. Initially, small spots were scattered across the leaf surface or margin. As disease progressed, small spots enlarged to dark brown lesions, with green-gray, conidia containing mold layer under humid conditions. Small leaf pieces were cut from the lesion margins and were sterilized with 70% ethanol for 10 s, 2% NaOCl for 2 min, rinsed with sterilized distilled water for three times, and then placed on potato dextrose agar (PDA) medium at 22°C in the dark. Seven similar colonies were consistently isolated from seven samples and further purified by single-spore isolation. Strains cultured on PDA were initially white, forming gray-white aerial mycelia, then turned gray and produced sclerotia after incubation for 2 weeks, which were brown to blackish, irregular, 0.8 to 3.0 × 1.2 to 3.5 mm (n=50). Conidia were unicellular, globose or oval, colourless, 7.5 to 12.0 × 5.5 to 8.3 μm (n=50). Conidiophores arose singly or in group, straight or flexuous, septate, brownish to light brown, with enlarged basal cells, 12.5 to 22.1 × 120.7 to 310.3 μm. Based on their morphological characteristics in culture, the isolates were putatively identified as Botrytis cinerea (Ellis 1971). Genomic DNA of four representative isolates, HNSMJ-1 to HNSMJ-4, were extracted by CTAB method. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH), heat-shock protein 60 gene (HSP60), ATP-dependent RNA helicaseDBP7 gene (MS547) and DNA-dependent RNA polymerase subunit II gene (RPB2) were amplified and sequenced using the primers described previously (Aktaruzzaman et al. 2018) (MW820311, MW831620, MW831628, MW831623 and MW831629 for HNSMJ-1; MW314722, MW316616, MW316617, MW316618 and MW316619 for HNSMJ-2; MW820519, MW831621, MW831627, MW831624 and MW831631 for HNSMJ-3; MW820601, MW831622, MW831626, MW831625 and MW831630 for HNSMJ-4). BLAST searches showed 99.43 to 99.90% identity to the corresponding sequences of B. cinerea strains, such as HJ-5 (MF426032.1, MN448500.1, MK791187.1, MH727700.1 and KX867998.1). A combined phylogenetic tree using the ITS, G3PDH, HSP60 and RPB2 sequences was constructed by neighbor-joining method in MEGA 6. It revealed that HNSMJ-1 to HNSMJ-4 clustered in the B. cinerea clade. Pathogenicity tests were performed on healthy pot-grown C. hupingshanensis plants. Leaves were surface-sterilized and sprayed with conidial suspension (106 conidia/ mL), with sterile water served as controls. All plants were kept in growth chamber with 85% humidity at 25℃ following a 16 h day-8 h night cycle. The experiment was repeated twice, with each three replications. After 4 to 7 days, symptoms similar to those observed in the field developed on the inoculated leaves, whereas controls remained healthy. The pathogen was reisolated from symptomatic tissues and identified using molecular methods, confirming Koch’s postulates. B. cinerea has already been reported from China on C. lyrate (Zhang 2006), a different species of C. hupingshanensis. To the best of our knowledge, this is the first report of B. cinerea causing gray mold on C. hupingshanensis in China and worldwide. Based on the widespread damage in the nursery, appropriate control strategies should be adopted. This study provides a basis for studying the epidemic and management of the disease.


Sign in / Sign up

Export Citation Format

Share Document