scholarly journals Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 329 ◽  
Author(s):  
Jia Luo ◽  
Xiaoling Zhou ◽  
Matteo Rubinato ◽  
Guijing Li ◽  
Yuxin Tian ◽  
...  

Vegetation plays a significant role in controlling soil erosion. However, the effects of each vegetation type on soil erosion have not been fully investigated. In order to explore the influence of multiple vegetation covers on soil erosion and surface runoff generation, 10 different vegetation types, typical of the Nverzhai small basin, have been selected for this study. Regional precipitation, surface runoff, and sediment yield were measured from 2007 to 2018. The wettest year recorded was 2012. Recorded data confirmed that July was the wettest month in this region while January and December were the driest months. Furthermore, surface runoff and sediment yield associated with different vegetation types gradually decreased after 2013, which is the quantification of the consequences due to afforestation processes started in this area. Surface runoff and sediment content recorded for the configuration of sloping farmland were the largest between the different investigated vegetation types. The smallest were the broad-leaved mixed forest, the coniferous mixed forest, and shrubs. Finally, a significant linear positive correlation was found between rainfall and surface runoff, as well as sediment yield (R2 = 0.75). This suggests that climate change implications could be limited by using the more efficient vegetation covering. This research indicates that the ground cover is a key element in controlling soil and water loss, as well as vegetation measures, with high ground cover (i.e., broad-leaved trees). These measures should be strongly recommended for soil erosion control and surface runoff reduction. Moreover, these outcomes can be very helpful for vegetation restoration and water conservation strategies if implemented by local authorities.

1989 ◽  
Vol 3 (4) ◽  
pp. 627-631 ◽  
Author(s):  
John R. Lacey ◽  
Clayton B. Marlow ◽  
John R. Lane

The influence of spotted knapweed on surface runoff and sediment yield was determined under simulated rainfall conditions near Garrison, MT. Comparisons were made in 12 paired plots: one of each pair dominated by bunchgrass and the other dominated by spotted knapweed. Runoff and sediment yield were 56% and 192% higher, respectively, for the spotted knapweed, rather than the bunchgrass vegetation types. Spotted knapweed invasion onto bunchgrass range of western Montana is thus detrimental to the protection of soil and water resources.


2017 ◽  
Vol 4 (2) ◽  
pp. 263
Author(s):  
Sri Malahayati Yusuf

Depletion of watershed carrying capacity cannot be omitted from mismanagement of the watershed. The integration between SWAT model and remote sensing data are able to identify, assess, and evaluate watershed problem as well as a tool to apply the mitigation of the problem. The aim of this study was to arrange the scenario of watershed management, and decide the best recommendation of sustainable watershed management of Mamasa Sub Watershed. The best recommendation was decided by hydrology parameters, e.i. surface runoff, sediment, and runoff coefficient. Hydrology characteristics of Mamasa Sub Watershed was analyzed based on land use data of year 2012 and climate data for period of 2010-2012. The scenarios were  application of bunch and mulch in slope 1-15%; bunch terrace (scenario 1), mulch and strip grass in slope 15-25% (scenario 2), alley cropping in slope 25-40% (scenario 3), and combination scenario 1, 2, 3 with agroforestry in slope > 40% (scenario4). Surface runoff value of Mamasa Sub Watershed is 581.35 mm, while lateral flow, groundwater flow, runoff coefficient, and sediment yield of 640.72 mm, 228.17 mm, 0.29, and 187.213 ton/ha respectively. Based on the scenarios simulation, the fourth scenario was able to reduce surface runoff and sediment yield of 33.441% and of 51.213%, while the runoff coefficient declined to 0.194. Thereby, the fourth scenario is recommended to be applied in Mamasa Sub Watershed so that the sustainability in the watershed can be achieved.


2020 ◽  
Vol 12 (3) ◽  
pp. 934 ◽  
Author(s):  
Mengfan Cai ◽  
Chunjiang An ◽  
Christophe Guy ◽  
Chen Lu

Soil and water conservation practices (SWCPs) are widely used to control soil and water loss. Quantifying the effect of SWCPs and climate change on soil and water erosion is important for regional environmental management. In this study, the Soil Conservation Service Curve Number (SCS-CN) and the Modified Universal Soil Loss Equation (MUSLE) were employed to investigate the patterns of surface runoff and soil erosion with different SWCPs in the hilly region on the Loess Plateau of China. The impact of climate change under RCP4.5 and RCP8.5 emission scenarios was considered from 2020 to 2050. Surface runoff grew with the increased rainfall and rainfall erosivity, while soil erosion presented large variations between years due to uneven distribution of rainfall and rainfall erosivity under two scenarios. Different SWCPs significantly reduced surface soil and water loss. Compared with bare slopes, the reduction rates were 15–40% for surface runoff and 35–67% for soil erosion under RCP4.5 and RCP8.5 emission scenarios, respectively. The combination of shrub and horizontal terracing was recommended due to its low water cost for sediment control among seven SWCPs.


2020 ◽  
Vol 12 (5) ◽  
pp. 2077 ◽  
Author(s):  
Chunfeng Jia ◽  
Baoping Sun ◽  
Xinxiao Yu ◽  
Xiaohui Yang

Vegetation plays an important role in reducing soil erosion. By exploring the allocation and coverage of different types of vegetation, we can improve management practices that can significantly reduce soil erosion. In this experiment, we study runoff and sediment losses on a shrub-grass planted, grass planted, and bare slope under different rainfall intensities. Results showed that the runoff generation time for the three subgrade types decreased as rainfall intensity increased (p < 0.05). The slopes planted with either grass or shrub-grass were able to effectively delay runoff generation. As rainfall intensity increased, the runoff amount increased for all treatments, with runoff in the bare slope increasing the most. The runoff reduction rate from the shrub-grass slope ranged from 54.20% to 63.68%, while the reduction rate from the slope only planted with grass ranged from 38.59% to 55.37%. The sediment yield from the bare slope increased from 662.66 g/m2 (15 mm/h) to 2002.95 g/m2 (82 mm/h) with increasing rainfall intensity in the plot. When compared with the bare slope, both the shrub-grass and planted grass slopes were able to retain an additional 0.9 g/m2 to 4.9 g/m2 of sediment, respectively. An accurate relationship between rainfall intensity, sloped vegetation types, and runoff reduction rate was obtained by regression analysis and validated. These results can provide a reference for improving soil and water conservation via improved vegetation allocation on a sloped roadbed.


2011 ◽  
Vol 347-353 ◽  
pp. 2094-2097 ◽  
Author(s):  
Pei Qing Xiao ◽  
Wen Yi Yao ◽  
Chang Gao Wang

Runoff, sediment yield and infiltration process of shrub plots were studied under rainfall intensities of 45, 87 and 127 mm/h with 20° slope gradient using simulated rainfall experiment. The results showed that cumulative runoff and cumulative sediment yield of shrub plot had an obvious positive correlation with rainfall time. Under rainfall intensity of 45 mm/h, runoff and sediment yield of shrub plot kept a constant level. Under rainfall intensity of 87 mm/h, runoff kept a fluctuant increase, whereas sediment yield basically kept steady. Under rainfall intensity of 127 mm/h, runoff and sediment yield of shrub plot increased evidently due to the formation of erosion pits. Infiltration rate of shrub plot had a negative relation with runoff as well as sediment yield.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1264
Author(s):  
Fabing Xie ◽  
Guangju Zhao ◽  
Xingmin Mu ◽  
Peng Tian ◽  
Peng Gao ◽  
...  

Soil erosion has become the dominant environmental issue endangering sustainable development in agriculture and the ecosystem on the Loess Plateau. Determination of watershed soil erosion rates and sediment yields is essential for reasonable utilization of water resources and soil loss control. In this study, we employed unmanned aerial vehicles (UAVs) and structure-from-motion (SfM) photogrammetry to determine the sediment yields in 24 dam-controlled watersheds in the Pisha sandstone region of the northern Loess Plateau. High differences in total sediment were trapped before the check dams due to their running periods and sediment yields. The estimated specific sediment yield ranged from 34.32 t/(ha∙a) to 123.80 t/(ha∙a) with an average of 63.55 t/(ha∙a), which indicated that the Pisha sandstone region had an intense soil erosion rate. Furthermore, the modified Sediment Distributed Delivery (SEDD) model was applied to identify the erosion-prone areas in the watersheds, and the sediment retained in the check dams were used for model calibration. The performance of the model was acceptable, and the modeling results indicated that the steep Pisha sandstone was the major sediment source for the watersheds, accounting for approximately 87.37% of the sediment yield. Catchment area, erosive precipitation, and badland proportion were the key factors for sediment yield in the dam-controlled watersheds of the Pisha sandstone region, according to multiple regression analyses. These findings indicated that the modified SEDD model is very efficient in identifying spatial heterogeneities of sediment yield in the watershed but requires comprehensive calibration and validation with long-term observations. The Pisha sandstone region is still the key area of soil erosion control in the Loess Plateau, which needs more attention for soil and water conservation due to high sediment yield.


Sign in / Sign up

Export Citation Format

Share Document