scholarly journals Slash Pile Burn Scar Restoration: Tradeoffs between Abundance of Non-Native and Native Species

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 813
Author(s):  
Ian Sexton ◽  
Philip Turk ◽  
Lindsay Ringer ◽  
Cynthia S. Brown

The accumulation of live and dead trees and other vegetation in forests across the western United States is producing larger and more severe wildfires. To decrease wildfire severity and increase forest resilience, foresters regularly remove excess fuel by burning woody material in piles. This common practice could also cause persistent ecosystem changes such as the alteration of soil physical and chemical properties due to extreme soil heating, which can favor invasion by non-native plant species. The abundance and species richness of native plant communities may also remain depressed for many years after burning has removed vegetation and diminished propagules in the soil. This adds to the vulnerability of burned areas to the colonization and dominance by invasive species. Research into the use of revegetation techniques following pile burning to suppress invasion is limited. Studies conducted in various woodland types that investigated revegetation of pile burn scars have met with varying success. To assess the effectiveness of restoring pile burn scars in Rocky Mountain National Park, Colorado, we monitored vegetation in 26 scars, each about 5 m in diameter, the growing season after burning. Later that summer, we selected 14 scars for restoration that included soil scarification, seed addition, and pine duff mulch cover. We monitored the scars for four years, pre-restoration, and three years post-restoration and found that the cover of seeded species exceeded the surrounding unburned areas and unseeded controls. The restoration seeding suppressed cover of non-native species as well as native species that were not seeded during restoration. Our results suggest that restoration of pile burn scars could be a useful tool to retard the establishment of invasive plant species when there are pre-existing infestations near scars. However, this must be weighed against the simultaneous suppression of native species recruitment. Monitoring for periods more than three years will help us understand how long the suppression of native and non-native species by restoration species may persist.

Botany ◽  
2016 ◽  
Vol 94 (6) ◽  
pp. 481-491 ◽  
Author(s):  
Catherine A. Gehring ◽  
Michaela Hayer ◽  
Lluvia Flores-Rentería ◽  
Andrew F. Krohn ◽  
Egbert Schwartz ◽  
...  

Invasive, non-native plant species can alter soil microbial communities in ways that contribute to their persistence. While most studies emphasize mycorrhizal fungi, invasive plants also may influence communities of dark septate fungi (DSF), which are common root endophytes that can function like mycorrhizas. We tested the hypothesis that a widespread invasive plant in the western United States, cheatgrass (Bromus tectorum L.), influenced the abundance and community composition of DSF by examining the roots and rhizosphere soils of cheatgrass and two native plant species in cheatgrass-invaded and noninvaded areas of sagebrush steppe. We focused on cheatgrass because it is negatively affected by mycorrhizal fungi and colonized by DSF. We found that DSF root colonization and operational taxonomic unit (OTU) richness were significantly higher in sagebrush (Artemisia tridentata Nutt.) and rice grass (Achnatherum hymenoides (Roem. & Schult.) Barkworth) from invaded areas than noninvaded areas. Cheatgrass roots had similar levels of DSF colonization and OTU richness as native plants. The community composition of DSF varied with invasion in the roots and soils of native species and among the roots of the three plant species in the invaded areas. The substantial changes in DSF we observed following cheatgrass invasion argue for comparative studies of DSF function in native and non-native plant species.


2006 ◽  
Vol 28 (1) ◽  
pp. 27 ◽  
Author(s):  
A. C. Grice

Most parts of the Australian rangelands are at risk of invasion by one or more species of non-native plants. The severity of current problems varies greatly across the rangelands with more non-native plant species in more intensively settled regions, in climatic zones that have higher and more reliable rainfall, and in wetter and more fertile parts of rangeland landscapes. Although there is quantitative evidence of impacts on either particular taxonomic groups or specific ecological processes in Australian rangelands, a comprehensive picture of responses of rangeland ecosystems to plant invasions is not available. Research has been focused on invasive species that are perceived to have important effects. This is likely to down play the significance of species that have visually less dramatic influences and ignore the possibility that some species could invade and yet have negligible consequences. It is conceivable that most of the overall impact will come from a relatively small proportion of invasive species. Impacts have most commonly been assessed in terms of plant species richness or the abundance of certain groups of vertebrates to the almost complete exclusion of other faunal groups. All scientific studies of the impacts of invasive species in Australian rangelands have focused on the effects of individual invasive species although in many situations native communities are under threat from a complex of interacting weed species. Invasion by non-native species is generally associated with declines in native plant species richness, but faunal responses are more complex and individual invasions may be associated with increase, decrease and no-change scenarios for different faunal groups. Some invasive species may remain minor components of the vegetation that they invade while others completely dominate one stratum or the vegetation overall.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hui Zhang ◽  
Kai Jiang ◽  
Yang Zhao ◽  
Yuting Xing ◽  
Haijie Ge ◽  
...  

Selecting appropriate native species for the biological control of invasive exotic plants is a recurring challenge for conservationists, ecologists, and land managers. Recently developed trait-based approaches may be an effective means of overcoming this challenge. However, we lack a protocol and software platform that can be used to quickly and effectively select potential native plant species for performing biological control of the invasive exotic plant species. Here, our study introduces a protocol and a software program that can be used for trait-based selection of appropriate native plant species for performing biocontrol of invasive exotic plant species. In particular, we illustrate the effectiveness of this software program and protocol by identifying native species that can be used for the biological control of Leucaena leucocephala (Lam.) de Wit, a highly invasive plant species found in many parts of the world. Bougainvillea spectabilis was the only native species selected by our software program as a potential biocontrol agent for L. leucocephala. When separately planting 4 seedlings of B. spectabilis and two unselected species (Bombax ceiba, and Ficus microcarpa) as neighbors of each individual of L. leucocephala for 3 years, we found that B. spectabilis, which was functionally similar to the invasive L. leucocephala, significantly limited the invasion of the latter, while the unselected native plant species could not. That was because all the seedling of B. spectabilis survived, while half seedlings of unselected species (B. ceiba and F. microcarpa) died, during the experimental period when planted with L. leucocephala seedlings. Moreover, the growth of L. leucocephala was restricted when planted with B. spectabilis, in contrast B. ceiba and F. microcarpa did not influence the growth of L. leucocephala. Overall, our software program and protocol can quickly and efficiently select native plant species for use in the biological control of invasive exotic plant species. We expect that this work will provide a general protocol to perform biological control of many different types of invasive exotic plant species.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0237894
Author(s):  
Amy E. Kendig ◽  
Vida J. Svahnström ◽  
Ashish Adhikari ◽  
Philip F. Harmon ◽  
S. Luke Flory

Infectious diseases and invasive species can be strong drivers of biological systems that may interact to shift plant community composition. For example, disease can modify resource competition between invasive and native species. Invasive species tend to interact with a diversity of native species, and it is unclear how native species differ in response to disease-mediated competition with invasive species. Here, we quantified the biomass responses of three native North American grass species (Dichanthelium clandestinum, Elymus virginicus, and Eragrostis spectabilis) to disease-mediated competition with the non-native invasive grass Microstegium vimineum. The foliar fungal pathogen Bipolaris gigantea has recently emerged in Microstegium populations, causing a leaf spot disease that reduces Microstegium biomass and seed production. In a greenhouse experiment, we examined the effects of B. gigantea inoculation on two components of competitive ability for each native species: growth in the absence of competition and biomass responses to increasing densities of Microstegium. Bipolaris gigantea inoculation affected each of the three native species in unique ways, by increasing (Dichanthelium), decreasing (Elymus), or not changing (Eragrostis) their growth in the absence of competition relative to mock inoculation. Bipolaris gigantea inoculation did not, however, affect Microstegium biomass or mediate the effect of Microstegium density on native plant biomass. Thus, B. gigantea had species-specific effects on native plant competition with Microstegium through species-specific biomass responses to B. gigantea inoculation, but not through modified responses to Microstegium density. Our results suggest that disease may uniquely modify competitive interactions between invasive and native plants for different native plant species.


The Condor ◽  
2021 ◽  
Author(s):  
Douglas W Tallamy ◽  
W Gregory Shriver

Abstract A flurry of recently published studies indicates that both insects and birds have experienced wide-scale population declines in the last several decades. Curiously, whether insect and bird declines are causally linked has received little empirical attention. Here, we hypothesize that insect declines are an important factor contributing to the decline of insectivorous birds. We further suggest that insect populations essential to insectivorous birds decline whenever non-native lumber, ornamental, or invasive plant species replace native plant communities. We support our hypothesis by reviewing studies that show (1) due to host plant specialization, insect herbivores typically do poorly on non-native plants; (2) birds are often food limited; (3) populations of insectivorous bird species fluctuate with the supply of essential insect prey; (4) not all arthropod prey support bird reproduction equally well; and (5) terrestrial birds for which insects are an essential source of food have declined by 2.9 billion individuals over the last 50 years, while terrestrial birds that do not depend on insects during their life history have gained by 26.2 million individuals, a 111-fold difference. Understanding the consequences of insect declines, particularly as they affect charismatic animals like birds, may motivate land managers, homeowners, and restoration ecologists to take actions that reverse these declines by favoring the native plant species that support insect herbivores most productively.


2021 ◽  
Author(s):  
Ingmar Staude ◽  
Josiane Segar ◽  
Corey Thomas Callaghan ◽  
Emma Ladouceur ◽  
Jasper Meya ◽  
...  

Global commitments to species conservation have failed to halt systematic widespread declines in plant species. Current policy interventions, such as protected areas and legal species legislation, remain insufficient, and there is an urgent need to engage novel approaches and actors in conservation. Here, we propose that urban conservation gardening, namely the cultivation of declining native plant species in public and private green spaces, can be one such approach. Conservation gardening can address key (a)biotic drivers of species decline, act as a critical dispersal pathway and increase the occupancy of declining native species. We identify policy mechanisms to upscale conservation gardening to a mainstream activity by reforming the existing horticultural market into an innovative nature protection instrument. This involves incentivizing the integration of the native seed sector, leveraging existing certification and labelling schemes, promoting consumer access, as well as building citizen-science projects to foster public engagement. Mainstreamed conservation gardening can be an economically viable, sustainable, and participatory measure that complements traditional approaches to plant conservation.


Author(s):  
Elizabeth M. Wandrag ◽  
◽  
Jane A. Catford ◽  
◽  
◽  
...  

The introduction of species to new locations leads to novel competitive interactions between resident native and newly-arriving non-native species. The nature of these competitive interactions can influence the suitability of the environment for the survival, reproduction and spread of non-native plant species, and the impact those species have on native plant communities. Indeed, the large literature on competition among plants reflects its importance in shaping the composition of plant communities, including the invasion success of non-native species. While competition and invasion theory have historically developed in parallel, the increasing recognition of the synergism between the two themes has led to new insights into how non-native plant species invade native plant communities, and the impacts they have on those plant communities. This chapter provides an entry point into the aspects of competition theory that can help explain the success, dominance and impacts of invasive species. It focuses on resource competition, which arises wherever the resources necessary for establishment, survival, reproduction and spread are in limited supply. It highlights key hypotheses developed in invasion biology that relate to ideas of competition, outlines biotic and abiotic factors that influence the strength of competition and species' relative competitive abilities, and describes when and how competition between non-native and native plant species can influence invasion outcomes. Understanding the processes that influence the strength of competition between non-native and native plant species is a necessary step towards understanding the causes and consequences of biological invasions.


AoB Plants ◽  
2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Betsy von Holle ◽  
Sören E Weber ◽  
David M Nickerson

Abstract Plant species ranges are expected to shift in response to climate change, however, it is unclear how species interactions will affect range shifts. Because of the potential for enemy release of invasive nonnative plant species from species-specific soil pathogens, invasive plants may be able to shift ranges more readily than native plant species. Additionally, changing climatic conditions may alter soil microbial functioning, affecting plant–microbe interactions. We evaluated the effects of site, plant–soil microbe interactions, altered climate, and their interactions on the growth and germination of three congeneric shrub species, two native to southern and central Florida (Eugenia foetida and E. axillaris), and one nonnative invasive from south America (E. uniflora). We measured germination and biomass for these plant species in growth chambers grown under live and sterile soils from two sites within their current range, and one site in their expected range, simulating current (2010) and predicted future (2050) spring growing season temperatures in the new range. Soil microbes (microscopic bacteria, fungi, viruses and other organisms) had a net negative effect on the invasive plant, E. uniflora, across all sites and temperature treatments. This negative response to soil microbes suggests that E. uniflora’s invasive success and potential for range expansion are due to other contributing factors, e.g. higher germination and growth relative to native Eugenia. The effect of soil microbes on the native species depended on the geographic provenance of the microbes, and this may influence range expansion of these native species.


2015 ◽  
Vol 40 (1) ◽  
pp. 112-134 ◽  
Author(s):  
Sébastien Larrue ◽  
Jean-François Butaud ◽  
Pascal Dumas ◽  
Stéphane Ballet

Which abiotic factors influence the number of native plant species on remote atolls is an important question to understand better the spatial pattern of the species observed on these low and vulnerable coral islands. However, this issue is still very poorly documented, often due to human degradation, partial botanical surveys or the difficult geographic access of remote atolls for researchers. The remote atolls of Eastern Polynesia, which are among the most isolated in the world, are of great interest for studies of native species’ distribution due to their isolation, low human density and urbanisation. In this study, we selected 49 remote atolls of Eastern Polynesia with complete botanical surveys to test the relative influence of eight abiotic factors on native plant species richness (i.e. indigenous and endemic species). Abiotic factors used as potential predictors included atoll area (km2), shoreline length (km), atoll elevation (m) and index of isolation (UNEP), but also the coastal index of the atoll ( Ic), the distance to the nearest similar atoll (km), the distance to the nearest large volcanic island ≥ 1000 km2 (here, Tahiti as a potential stepping-stone island) and the distance to the nearest raised atoll ≥ 15 m a.s.l. (here, Makatea or Henderson as a potential refugium during sea-level highstands). Spearman’s rank correlation, linear regression analysis and frequency diagrams were used to assess the relative influence of these factors on native species richness. No relationship was found between the species richness and the index of isolation or the distance to the nearest similar atoll. Atoll area and distance to the nearest raised atoll of Makatea explained 47.1% and 40%, respectively, of the native species richness variation observed on the remote atolls. The distance to the volcanic island of Tahiti and the coastal index explained 36.9% and 27.3% of the variation, while elevation and shoreline length explained 23.3% and 18.4% of the variation, respectively. Native species richness on the atolls surveyed increased with the increasing atoll area, elevation and shoreline length, but decreased with the increasing distance to the nearest raised atoll of Makatea and the large volcanic island of Tahiti. This supports the view that the spatial pattern of native species richness observed on the remote atolls was strongly influenced by (i) atoll area but also by (ii) the distance to the raised atoll of Makatea, and (iii) the distance to the volcanic island of Tahiti. This finding suggests that the raised atoll may be viewed as a refugium during sea-level highstands while the large volcanic island played the role of stepping-stone island, both islands influencing the dispersal of native species on remote atolls and attenuating the isolation effect in the study area.


Sign in / Sign up

Export Citation Format

Share Document