scholarly journals Relationship between Soil Fungi and Seedling Density in the Vicinity of Adult Conspecifics in an Arid Desert Forest

Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Yanxin Long ◽  
Xiaodong Yang ◽  
Yuee Cao ◽  
Guanghui Lv ◽  
Yan Li ◽  
...  

Research Highlights: 1. Soil fungi have a higher influence on seedling density compared to soil environmental factors; 2. Host-specific pathogens and beneficial fungi affect seeding density via different influencing mechanisms. Background and Objectives: The growth and development of seedlings are the key processes that affect forest regeneration and maintain community dynamics. However, the influencing factors of seedling growth around their adult conspecifics are not clear in arid desert forests. Probing the intrinsic relations among soil fungi, soil environmental factors (pH, water content, salinity, and nutrition), and seedling density will improve our understanding of forest development and provide a theoretical basis for forest management and protection. Materials and Methods: Four experimental plot types, depending on the distance to adult conspecifics, were set in an arid desert forest. Soil environmental factors, the diversity and composition of the soil fungal community, and the seedlings’ density and height were measured in the four experimental plot types, and their mutual relations were analyzed. Results: Seedling density as well as the diversity and composition of the soil fungal community varied significantly among the four plot types (p < 0.05). Soil environmental factors, especially soil salinity, pH, and soil water content, had significant influences on the seedling density and diversity and composition of the soil fungal community. The contribution of soil fungi (72.61%) to the variation in seedling density was much higher than the soil environmental factors (27.39%). The contribution of detrimental fungi to the variation in seedling density was higher than the beneficial fungi. Conclusions: Soil fungi mostly affected the distribution of seedling density in the vicinity of adult conspecifics in an arid desert forest. The distribution of seedling density in the vicinity of adults was mainly influenced by the detrimental fungi, while the adults in the periphery area was mainly influenced by the beneficial fungi.

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 167 ◽  
Author(s):  
Mengmeng Zhang ◽  
Ning Wang ◽  
Jingyun Zhang ◽  
Yanbo Hu ◽  
Dunjiang Cai ◽  
...  

A better understanding of soil fungal communities is very useful in revealing the effects of an agroforestry system and would also help us to understand the fungi-mediated effects of agricultural practices on the processes of soil nutrient cycling and crop productivity. Compared to conventional monoculture farming, agroforestry systems have obvious advantages in improving land use efficiency and maintaining soil physicochemical properties, reducing losses of water, soil material, organic matter, and nutrients, as well as ensuring the stability of yields. In this study, we attempted to investigate the impact of a mulberry/alfalfa intercropping system on the soil physicochemical properties and the rhizosphere fungal characteristics (such as the diversity and structure of the fungal community), and to analyze possible correlations among the planting pattern, the soil physicochemical factors, and the fungal community structure. In the intercropping and monoculture systems, we determined the soil physicochemical properties using chemical analysis and the fungal community structure with MiSeq sequencing of the fungal ITS1 region. The results showed that intercropping significantly improved the soil physicochemical properties of alfalfa (total nitrogen, alkaline hydrolysable nitrogen, available potassium, and total carbon contents). Sequencing results showed that the dominant taxonomic groups were Ascomycota, Basidiomycota, and Mucoromycota. Intercropping increased the fungal richness of mulberry and alfalfa rhizosphere soils and improved the fungal diversity of mulberry. The diversity and structure of the fungal community were predominantly influenced by both the planting pattern and soil environmental factors (total nitrogen, total phosphate, and total carbon). Variance partitioning analysis showed that the planting pattern explained 25.9% of the variation of the fungal community structure, and soil environmental factors explained 63.1% of the variation. Planting patterns and soil physicochemical properties conjointly resulted in changes of the soil fungal community structure in proportion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianqing Zheng ◽  
Ke Song ◽  
Shuangxi Li ◽  
Hanlin Zhang ◽  
Naling Bai ◽  
...  

AbstractThe diversity and community structure of soil fungi play an important role in crop production and ecosystem balance, especially in paddy-upland vegetable field systems. High-throughput sequencing was used to study changes in the soil fungal community structure and function in paddy-upland vegetable field systems. The results showed that compared with traditional planting, the diversity and community structure of soil fungi were changed by the combination of flooding and drought, the Shannon index increased by 11.07%, and the proportion of the dominant species, Mortierella, decreased by 22.74%. Soil available nitrogen, total phosphorus, available phosphorus, total nitrogen and organic matter played a leading role in the initial stage of the experiment, while the dominant factor changed to total potassium 3 years later and then to soil pH and water content 6 years later. FUNGuild analysis showed that the proportion of three independent trophic modes of soil fungi were increased by the combined flooded-drought model, and there were multiple interaction factors, For example, nutrient supply, pH and planting pattern. This study showed that soil fertility, crop yield and economic benefits were better than the traditional model after three years of planting and breeding. The longer the time, the better the effect.


2021 ◽  
Vol 50 (2) ◽  
pp. 327-334
Author(s):  
Fan Yang ◽  
Liqiang Mu ◽  
Qingyang Huang ◽  
Lihong Xie ◽  
Hongjie Cao ◽  
...  

The relationship between the fungal community characteristics and soil environmental factors of volcanic ecosystem in Wudalianchi, China were investigated. The soil fungal community structure and diversity of new, old, and non-erupting volcanos were explored through highthroughput sequencing technology. The result showed that the physical and chemical properties of three plots were significantly different. Through sequencing 578 species, 366 genera, 202 families, 89 orders, 32 classes, and 11 phyla were detected. Among them Ascomycota and Basidiomycota were the dominant fungi phyla. The relative abundance of various flora determined by phylum classification showed significant differences. The Shannon, Simpson, Ace, and Chao1 indices for the soil fungi in the three plots were also significantly different. Redundancy and correlation analyses showed that the α diversity of fungi was significantly correlated with pH, organic matter and total nitrogen in the soil. These results indicate that soil environmental factors influence the fungal diversity in the different volcanic ecosystems in Wudalianchi, China. Bangladesh J. Bot. 50(2): 327-334, 2021 (June)


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6251 ◽  
Author(s):  
Jiaojiao Deng ◽  
You Yin ◽  
Jiyao Luo ◽  
Wenxu Zhu ◽  
Yongbin Zhou

The effects of different revegetation types on soil physical–chemical characteristics and fungal community diversity and composition of soils sampled from five different revegetation types (JM, Juglans mandshurica; QM, Quercus mongolica; conifer-broadleaf forest (CB); LG, Larix gmelinii; PK, Pinus koraiensis) in the Baishilazi Nature Reserve were determined. Soil fungal communities were assessed employing ITS rRNA Illunima Miseq high-throughput sequencing. Responses of the soil fungi community to soil environmental factors were assessed through canonical correspondence analysis (CCA) and Pearson correlation analysis. The coniferous forests (L. gmelinii, P. koraiensis) and CB had reduced soil total carbon (C), total nitrogen (N), and available nitrogen (AN) values compared with the broadleaf forest (J. mandshurica, Q. mongolica). The average fungus diversity according to the Shannon, ACE, Chao1, and Simpson index were increased in the J. mandshurica site. Basidiomycota, Ascomycota, Zygomycota, and Rozellomycota were the dominant fungal taxa in this region. The phylum Basidiomycota was dominant in the Q. mongolica, CB, L. gmelinii, and P. koraiensis sites, while Ascomycota was the dominant phylum in the J. mandshurica site. The clear differentiation of fungal communities and the clustering in the heatmap and in non-metric multidimensional scaling plot showed that broadleaf forests, CB, and coniferous forests harbored different fungal communities. The results of the CCA showed that soil environmental factors, such as soil pH, total C, total N, AN, and available phosphorus (P) greatly influenced the fungal community structure. Based on our results, the different responses of the soil fungal communities to the different revegetation types largely dependent on different forest types and soil physicochemical characteristic in Baishilazi Nature Reserve.


2020 ◽  
Author(s):  
Li Ji ◽  
Yan Zhang ◽  
Yuchun Yang ◽  
Lixue Yang

AbstractThe biogeography of soil fungi has attracted much attention in recent years; however, studies on this topic have mainly focused on mid- and low-altitude regions. The seasonal patterns of soil fungal community structure and diversity along altitudinal gradients under the unique climatic conditions at high latitudes remain unclear, which limits our insight into soil microbial interactions and the mechanisms of community assembly. In this study, Illumina MiSeq sequencing was used to investigate the spatiotemporal changes in soil fungal communities along an altitudinal gradient (from 750 m to 1420 m) on Oakley Mountain in the northern Greater Khingan Mountains. Altitude had significant impacts on the relative abundances of the dominant phyla and classes of soil fungi, and the interaction of altitude and season significantly affected the relative abundances of Ascomycota and Basidiomycota. The number of soil fungal taxa and Faith’s phylogenetic diversity (PD) index tended to monotonically decline with increasing elevation. Soil moisture (SM), soil temperature (ST) and pH were the main factors affecting fungal community structure in May, July and September, respectively. The soil dissolved organic carbon (DOC) content significantly shaped the soil fungal community composition along the altitudinal gradient throughout the growing season. Compared to that in May and July, the soil fungal network in September had more nodes and links, a higher average degree and a higher average clustering coefficient. The nine module nodes in the co-occurrence network were all Ascomycota taxa, and the identities of the keystone taxa of soil fungi in the network showed obvious seasonality. Our results demonstrated that altitude has stronger effects than season on soil fungal community structure and diversity at high latitudes. In addition, the co-occurrence network of soil fungi exhibited obvious seasonal succession, which indicated that the keystone taxa of soil fungi exhibit niche differentiation among seasons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daihua Qi ◽  
Xuwen Wieneke ◽  
Peipei Xue ◽  
Li He ◽  
Udaya DeSilva

AbstractKarst rocky desertification (KRD) is a type of land deterioration, resulting in the degraded soil and a delicate ecosystem. Previous studies focused on the influence of KRD on the animals and plants, the impact of KRD on microorganisms, especially soil fungi remains to be discovered. This study reveals the change in the soil fungal community in response to KRD progression in southwest China. Illumina HiSeq was used to survey the soil fungal community. Results showed that the soil fungal community in the severe KRD (SKRD) was noticeably different from that in other KRD areas. Statistical analyses suggested that soil TN was the primary factor associated with the fungal community, followed by pH. Phylum Ascomycota was significantly abundant in non-degraded soils; whereas Basidiomycota predominated in SKRD. The ratio of Ascomycota/Basidiomycota significantly decreased along with KRD progression, which might be used as an indicator of KRD severity. Phylum Basidiomycota was sensitive to changes in all the soil properties but AP. Genus Sebacina might have the potential to promote vegetation and land restoration in KRD areas. This study fills a gap of knowledge on changes in soil fungal communities in accordance with KRD progression.


2020 ◽  
Vol 469 ◽  
pp. 118199
Author(s):  
Daniel Oliach ◽  
Carlos Colinas ◽  
Carles Castaño ◽  
Christine R. Fischer ◽  
Francesc Bolaño ◽  
...  

2017 ◽  
Vol 419 (1-2) ◽  
pp. 349-361 ◽  
Author(s):  
Miaojun Ma ◽  
James W. Dalling ◽  
Zhen Ma ◽  
Xianhui Zhou

Sign in / Sign up

Export Citation Format

Share Document