scholarly journals Interactions between Climate and Stand Conditions Predict Pine Mortality during a Bark Beetle Outbreak

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 360
Author(s):  
Paul J. Chisholm ◽  
Camille S. Stevens-Rumann ◽  
Thomas Seth Davis

In temperate coniferous forests, biotic disturbances such as bark beetle outbreaks can result in widespread tree mortality. The characteristics of individual trees and stands, such as tree diameter and stand density, often influence the probability of tree mortality during a bark beetle outbreak. However, it is unclear if these relationships are mediated by climate. To test this, we assembled tree mortality data for over 3800 ponderosa pine trees from Forest Inventory and Analysis (FIA) plots measured before and after a mountain pine beetle outbreak in the Black Hills, South Dakota, USA. Logistic models were used to determine which tree, stand, and climate characteristics were associated with the probability of mortality. Interactions were tested between significant climate variables and significant tree/stand variables. Our analysis revealed that mortality rates were lower in trees with higher live crown ratios. Mortality rates rose in response to increasing tree diameter, stand basal area (both from ponderosa pine and non-ponderosa pine), and elevation. Below 1500 m, the mortality rate was ~1%, while above 1700 m, the rate increased to ~30%. However, the association between elevation and mortality risk was buffered by precipitation, such that relatively moist high-elevation stands experienced less mortality than relatively dry high-elevation stands. Tree diameter, crown ratio, and stand density affected tree mortality independent of precipitation. This study demonstrates that while stand characteristics affect tree susceptibility to bark beetles, these relationships may be mediated by climate. Thus, both site and stand level characteristics should be considered when implementing management treatments to reduce bark beetle susceptibility.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael J. Koontz ◽  
Andrew M. Latimer ◽  
Leif A. Mortenson ◽  
Christopher J. Fettig ◽  
Malcolm P. North

AbstractThe recent Californian hot drought (2012–2016) precipitated unprecedented ponderosa pine (Pinus ponderosa) mortality, largely attributable to the western pine beetle (Dendroctonus brevicomis; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km2, validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality.


2010 ◽  
Vol 25 (4) ◽  
pp. 181-185 ◽  
Author(s):  
Donald M. Grosman ◽  
Christopher J. Fettig ◽  
Carl L. Jorgensen ◽  
A. Steven Munson

Abstract Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important tree mortality agents in western coniferous forests. Protection of individual trees from bark beetle attack has historically involved applications of liquid formulations of contact insecticides to the tree bole using hydraulic sprayers. More recently, researchers looking for more portable and environmentally safe alternatives have examined the effectiveness of injecting small quantities of systemic insecticides directly into trees. In this study, we evaluated trunk injections of experimental formulations of emamectin benzoate and fipronil for preventing tree mortality due to attack by western pine beetle (Dendroctonus brevicomis LeConte) on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in California, mountain pine beetle (Dendroctonus ponderosae Hopkins) on lodgepole pine (Pinus contorta Dougl. ex Loud.) in Idaho, and spruce beetle (D. rufipennis [Kirby]) on Engelmann spruce (Picea engelmannii Parry ex Engelm.) in Utah. Fipronil appeared ineffective for protecting P. ponderosa from mortality due to D. brevicomis over the 3 years in California because of insufficient mortality of untreated, baited control trees the first 2 years and high mortality of the fipronil-treated trees in the third year. Emamectin benzoate was effective in providing protection of P. ponderosa from D. brevicomis during the third year following a single application. To our knowledge, this is the first demonstration of the successful application of a systemic insecticide for protecting individual conifers from mortality due to bark beetle attack in the western United States. Estimates of efficacy could not be made during both field seasons in P. contorta because of insufficient mortality in control trees. Both emamectin benzoate and fipronil were ineffective for protecting P. engelmannii from D. rufipennis. Lower ambient and soil temperatures and soil moisture may have limited chemical movement and thus efficacy at the Idaho and Utah sites.


1999 ◽  
Vol 14 (3) ◽  
pp. 144-148 ◽  
Author(s):  
Gregory M. Filip ◽  
Stephen A. Fitzgerald ◽  
Lisa M. Ganio

Abstract A 30-yr-old stand of ponderosa pine was precommercially thinned in 1966 to determine the effects of thinning on tree growth and mortality caused by Armillaria root disease in central Oregon. After 30 yr, crop tree mortality was significantly (P = 0.02) less in thinned plots than in unthinned plots. Tree diameter growth was not significantly (P = 0.17) increased by thinning. Crop-tree basal area/ac growth was significantly (P = 0.03) greater in thinned plots. Apparently, from a root disease perspective, precommercial thinning of pure ponderosa stands significantly decreases the incidence of crop-tree mortality after 30 yr and significantly increases basal area/ac growth but not individual tree diameter growth. Recommendations for thinning based on stand density index (SDI) are given. West. J. Appl. For. 14(3):144-148.


2019 ◽  
Author(s):  
Michael J Koontz ◽  
Andrew M. Latimer ◽  
Leif A. Mortenson ◽  
Christopher J. Fettig ◽  
Malcolm P. North

The recent Californian hot drought (2012-2016) precipitated unprecedented ponderosa pine (Pinus ponderosa) mortality, largely attributable to the western pine beetle (Dendroctonus brevicomis; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km2, validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality.


1980 ◽  
Vol 112 (7) ◽  
pp. 725-730 ◽  
Author(s):  
D. J. Goheen ◽  
F. W. Cobb

AbstractThe relationship between bark beetle infestation of ponderosa pine and severity of infection by Ceratocystis wageneri was investigated by closely monitoring 256 trees (136 apparently healthy, 60 moderately diseased, and 60 severely diseased at initiation of study) for beetle infestation from summer 1972 to fall 1975. Disease ratings were updated by periodic examination, and some trees changed disease category during the study. Ninety trees were infested by Dendroctonus brevicomis, D. ponderosae, or both, five by buprestids alone, and one tree died from effects of the pathogen alone. Sixty-two of the beetle-infested trees were severely diseased at time of infestation, 25 were moderately diseased, and only three were apparently healthy. Thus, the results showed that bark beetles were much more likely to infest infected than healthy trees. Among diseased trees, those with advanced infections were most likely to be infested. There was evidence that buprestids (especially Melanophila spp.) and possibly Ips spp. attacked diseased trees prior to Dendroctonus spp. infestation.


2016 ◽  
Vol 77 (4) ◽  
pp. 352-357
Author(s):  
Dominik Kulakowski

Abstract Forests in Europe and North America are being affected by large and severe outbreaks of bark beetles, which have caused widespread concern about forest health and have led to proposals for tree removal in affected or susceptible forests. Any such intervention, as well as broader decisions of whether any active interventions are appropriate, should be based on the best scientific data. This is true for all forests, including those whose purposes include timber production, watershed protection, biogeochemical function and recreation, and especially protected and conservation areas as the latter often provide particularly unique and important cultural, social, scientific and other ecosystem services. Here, I summarize peer-reviewed literature on the effects of bark beetle outbreaks and on silvicultural treatments aimed at mitigating beetle-induced tree mortality. From an objective scientific perspective, beetle outbreaks do not destroy forests. Instead, in many cases they play an important role in promoting wildlife, biodiversity and other ecological services. The best available data indicate that logging in conservation areas is unlikely to stop ongoing bark beetle outbreaks and instead may be more ecologically detrimental to the forests than the outbreaks themselves. If the purpose of a forest is timber production, then logging is desirable and can be planned based on appropriate analyses of timber yield and economic profit. However, in areas in which conservation is the determined goal, it is recommended that cutting trees be limited to removing hazards, such as trees that might fall in areas of high human activity in order to limit property damage and personal injury. Based on extensive research in Europe and North America, logging beetle-affected forests is inconsistent with most conservation goals.


2007 ◽  
Vol 22 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Gregory M. Filip ◽  
Craig L. Schmitt ◽  
Donald W. Scott ◽  
Stephen A. Fitzgerald

Abstract Tree mortality in western conifer forests is a complex process involving several related factors. Conifer mortality tends to be more common in high-elevation forests where stress from weather, insects, and disease result in higher rates of mortality and in the drier interior forests where mortality from fire, insects, and disease are common. Immediate mortality from fire damage may be obvious, but currently there is considerable controversy about labeling fire-injured green trees as dead that have a high probability of experiencing delayed mortality. Trees die when carbohydrates used in respiration exceed those produced in photosynthesis or water movement is impaired, the tree desiccates, and photosynthesis ceases. Immediate or delayed tree mortality may be directly due to biotic or abiotic causes and may be affected by previous damage, current condition (vigor), and attack by secondary agents such as bark beetles. A particular pathogen or insect usually attacks, damages, or kills only one portion of a tree. Trees that are damaged or attacked by pests and expected to have a dead or nonfunctional root system or a nonfunctional stem within 5 years may be considered either dead or death is imminent. Numerous studies have produced logistic regression equations or other statistical models to help determine probability of tree survival. We define and propose that a “dead tree” designation is justified for most species when at least three of the four quadrants from around the base of the root collar has cambium, inner bark, or phloem that are discolored and dead. For large ponderosa pines, a dead tree has all four quadrants with dead cambium.


2008 ◽  
Vol 38 (5) ◽  
pp. 924-935 ◽  
Author(s):  
Christopher J. Fettig ◽  
Robert R. Borys ◽  
Stephen R. McKelvey ◽  
Christopher P. Dabney

Mechanical thinning and the application of prescribed fire are commonly used tools in the restoration of fire-adapted forest ecosystems. However, few studies have explored their effects on subsequent amounts of bark beetle caused tree mortality in interior ponderosa pine, Pinus ponderosa Dougl. ex P. & C. Laws. var. ponderosa. In this study, we examined bark beetle responses to creation of midseral (low diversity) and late-seral stages (high diversity) and the application of prescribed fire on 12 experimental units ranging in size from 76 to 136 ha. A total of 9500 (5.0% of all trees) Pinus and Abies trees died 2 years after treatment of which 28.8% (2733 trees) was attributed to bark beetle colonization. No significant difference in the mean percentage of trees colonized by bark beetles was found between low diversity and high diversity. The application of prescribed fire resulted in significant increases in bark beetle caused tree mortality (all species) and for western pine beetle, Dendroctonus brevicomis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, Ips spp., and fir engraver, Scolytus ventralis LeConte, individually. Approximately 85.6% (2339 trees) of all bark beetle caused tree mortality occurred on burned split plots. The implications of these and other results to sustainable forest management are discussed.


2014 ◽  
Vol 44 (6) ◽  
pp. 554-561 ◽  
Author(s):  
Rick G. Kelsey ◽  
D. Gallego ◽  
F.J. Sánchez-García ◽  
J.A. Pajares

Tree mortality from temperature-driven drought is occurring in forests around the world, often in conjunction with bark beetle outbreaks when carbon allocation to tree defense declines. Physiological metrics for detecting stressed trees with enhanced vulnerability prior to bark beetle attacks remain elusive. Ethanol, water, monoterpene concentrations, and composition were examined in the phloem and sapwood of drought-stressed Aleppo pine (Pinus halepensis Mill.) freshly attacked by mature Mediterranean pine shoot beetles (Tomicus destruens (Wollaston, 1865)) and in neighboring unattacked trees. The attacked trees were more water-stressed and contained, on average, 2.1 and 2.4 times more ethanol in the phloem and sapwood, respectively, than the neighboring attack-free trees. This response is consistent with the known attraction of T. destruens to ethanol. Most monoterpene concentrations in the phloem, but not sapwood, were greater in tissues of attacked trees, whereas compositional differences were minor between the two tree groups for both tissues. Tissue water content explained much of the variation in phloem monoterpene concentrations, which increased as water in the phloem declined, suggesting that higher constitutive quantities existed in the more stressed trees prior to the attacks. Monoterpenes may have contributed to host tree selection by T. destruens, but their potential influence is considered less important than that of ethanol based on beetle responses to these compounds in previous trapping studies. This is the first report of elevated ethanol concentrations in tissues of trees experiencing natural drought stress and suggests that ethanol measurements in severely water-stressed trees may allow early detection of those most vulnerable to bark beetle attack.


2013 ◽  
Vol 43 (4) ◽  
pp. 311-320 ◽  
Author(s):  
Jianwei Zhang ◽  
Martin W. Ritchie ◽  
Douglas A. Maguire ◽  
William W. Oliver

We analyzed 45 years of data collected from three ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) levels-of-growing-stock installations in Oregon (OR) and northern California (CA), USA, to determine the effect of stand density regimes on stand productivity and mortality. We found that periodic annual increment (PAI) of diameter, basal area (BA), volume, and aboveground dry mass were significantly related to stand density index (SDI) and stand age at start of the period; the quadratic trends varied among sites. Precipitation departure from the normal for each period explained a significant amount of residual variation in all PAI variables except diameter. BA production did not change significantly as SDI exceeded 270 trees·ha−1 at the OR sites and 320 trees·ha−1 at the CA site. Stand productivity was the highest at Elliot Ranch (CA) and the least at Blue Mountains (OR). A similar trend held in growth efficiency under lower stand densities (SDI < 600). Most of the mortality was caused by Dendroctonus bark beetles in stands that exceeded SDI of 500 trees·ha−1. Limiting SDI was about 900 trees·ha−1, although plots at Elliot Ranch reached much higher than that. The results demonstrate that silvicultural control of stand density can be a powerful tool for reducing bark beetle caused mortality without sacrificing stand productivity.


Sign in / Sign up

Export Citation Format

Share Document