scholarly journals Understanding and Defining Mortality in Western Conifer Forests

2007 ◽  
Vol 22 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Gregory M. Filip ◽  
Craig L. Schmitt ◽  
Donald W. Scott ◽  
Stephen A. Fitzgerald

Abstract Tree mortality in western conifer forests is a complex process involving several related factors. Conifer mortality tends to be more common in high-elevation forests where stress from weather, insects, and disease result in higher rates of mortality and in the drier interior forests where mortality from fire, insects, and disease are common. Immediate mortality from fire damage may be obvious, but currently there is considerable controversy about labeling fire-injured green trees as dead that have a high probability of experiencing delayed mortality. Trees die when carbohydrates used in respiration exceed those produced in photosynthesis or water movement is impaired, the tree desiccates, and photosynthesis ceases. Immediate or delayed tree mortality may be directly due to biotic or abiotic causes and may be affected by previous damage, current condition (vigor), and attack by secondary agents such as bark beetles. A particular pathogen or insect usually attacks, damages, or kills only one portion of a tree. Trees that are damaged or attacked by pests and expected to have a dead or nonfunctional root system or a nonfunctional stem within 5 years may be considered either dead or death is imminent. Numerous studies have produced logistic regression equations or other statistical models to help determine probability of tree survival. We define and propose that a “dead tree” designation is justified for most species when at least three of the four quadrants from around the base of the root collar has cambium, inner bark, or phloem that are discolored and dead. For large ponderosa pines, a dead tree has all four quadrants with dead cambium.

2012 ◽  
Vol 42 (4) ◽  
pp. 749-765 ◽  
Author(s):  
Constance I. Millar ◽  
Robert D. Westfall ◽  
Diane L. Delany ◽  
Matthew J. Bokach ◽  
Alan L. Flint ◽  
...  

Whitebark pine ( Pinus albicaulis Engelm.) in subalpine zones of eastern California experienced significant mortality from 2007 to 2010. Dying stands were dense (mean basal area 47.5 m2/ha), young (mean 176 years), and even-age; mean stand mortality was 70%. Stands were at low elevations (mean 2993 m), on northerly aspects, and experienced warmer, drier climates relative to the regional species distribution. White pine blister rust was not observed; mountain pine beetle infestations were extensive. Ring widths were negatively correlated with climatic water deficit and positively correlated with water-year precipitation. Although trees that survived had greater growth during the 20th century than trees that died, in the 19th century trees that eventually died grew better than trees that survived, suggesting selection for genetic adaptation to current climates as a result of differential tree mortality. Air surveys (2006–2010) in the Sierra Nevada, Mt. Shasta, and Warner Mountains showed similar trends to the intensive studies. Observed mortality from air surveys was highest in the Warner Mountains (38%) and lowest in the Sierra Nevada (5%); northern aspects at lower elevations within each mountain region had the highest probabilities of mortality and dying stands had higher climatic water deficit. Scenarios for the future of whitebark pine in California are discussed.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 360
Author(s):  
Paul J. Chisholm ◽  
Camille S. Stevens-Rumann ◽  
Thomas Seth Davis

In temperate coniferous forests, biotic disturbances such as bark beetle outbreaks can result in widespread tree mortality. The characteristics of individual trees and stands, such as tree diameter and stand density, often influence the probability of tree mortality during a bark beetle outbreak. However, it is unclear if these relationships are mediated by climate. To test this, we assembled tree mortality data for over 3800 ponderosa pine trees from Forest Inventory and Analysis (FIA) plots measured before and after a mountain pine beetle outbreak in the Black Hills, South Dakota, USA. Logistic models were used to determine which tree, stand, and climate characteristics were associated with the probability of mortality. Interactions were tested between significant climate variables and significant tree/stand variables. Our analysis revealed that mortality rates were lower in trees with higher live crown ratios. Mortality rates rose in response to increasing tree diameter, stand basal area (both from ponderosa pine and non-ponderosa pine), and elevation. Below 1500 m, the mortality rate was ~1%, while above 1700 m, the rate increased to ~30%. However, the association between elevation and mortality risk was buffered by precipitation, such that relatively moist high-elevation stands experienced less mortality than relatively dry high-elevation stands. Tree diameter, crown ratio, and stand density affected tree mortality independent of precipitation. This study demonstrates that while stand characteristics affect tree susceptibility to bark beetles, these relationships may be mediated by climate. Thus, both site and stand level characteristics should be considered when implementing management treatments to reduce bark beetle susceptibility.


2007 ◽  
Vol 37 (12) ◽  
pp. 2508-2520 ◽  
Author(s):  
Constance I. Millar ◽  
Robert D. Westfall ◽  
Diane L. Delany

Limber pine ( Pinus flexilis James) stands along the eastern escarpment of the Sierra Nevada, California, experienced significant mortality from 1985 to 1995 during a period of sustained low precipitation and high temperature. The stands differ from old-growth limber pine forests in being dense, young, more even-aged, and located in warmer, drier microclimates. Tree growth showed high interannual variability. Relative to live trees, dead trees over their lifetimes had higher series sensitivity, grew more variably, and had lower growth. Although droughts recurred during the 20th century, tree mortality occurred only in the late 1980s. Significant correlations and interactions of growth and mortality dates with temperature and precipitation indicate that conditions of warmth plus sustained drought increased the likelihood of mortality in the 1985–1995 interval. This resembles a global-change-type drought, where warming combined with drought was an initial stress, trees were further weakened by dwarf mistletoe ( Arceuthobium cyanocarpum (A. Nels. ex Rydb.) A. Nels.), and proximally killed by mountain pine beetle ( Dendroctonus ponderosae Hopkins). However, the thinning effect of the drought-related mortality appears to have promoted resilience and improved near-term health of these stands, which suffered no additional mortality in the subsequent 1999–2004 drought.


2016 ◽  
Vol 77 (4) ◽  
pp. 352-357
Author(s):  
Dominik Kulakowski

Abstract Forests in Europe and North America are being affected by large and severe outbreaks of bark beetles, which have caused widespread concern about forest health and have led to proposals for tree removal in affected or susceptible forests. Any such intervention, as well as broader decisions of whether any active interventions are appropriate, should be based on the best scientific data. This is true for all forests, including those whose purposes include timber production, watershed protection, biogeochemical function and recreation, and especially protected and conservation areas as the latter often provide particularly unique and important cultural, social, scientific and other ecosystem services. Here, I summarize peer-reviewed literature on the effects of bark beetle outbreaks and on silvicultural treatments aimed at mitigating beetle-induced tree mortality. From an objective scientific perspective, beetle outbreaks do not destroy forests. Instead, in many cases they play an important role in promoting wildlife, biodiversity and other ecological services. The best available data indicate that logging in conservation areas is unlikely to stop ongoing bark beetle outbreaks and instead may be more ecologically detrimental to the forests than the outbreaks themselves. If the purpose of a forest is timber production, then logging is desirable and can be planned based on appropriate analyses of timber yield and economic profit. However, in areas in which conservation is the determined goal, it is recommended that cutting trees be limited to removing hazards, such as trees that might fall in areas of high human activity in order to limit property damage and personal injury. Based on extensive research in Europe and North America, logging beetle-affected forests is inconsistent with most conservation goals.


Fire ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
Lane Johnson ◽  
Ellis Margolis

Tree-ring fire scars, tree ages, historical photographs, and historical surveys indicate that, for centuries, fire played different ecological roles across gradients of elevation, forest, and fire regimes in the Taos Valley Watersheds. Historical fire regimes collapsed across the three watersheds by 1899, leaving all sites without fire for at least 119 years. Historical photographs and quaking aspen (Populus tremuloides Michx.) ages indicate that a high-severity fire historically burned at multiple high-elevation subalpine plots in today’s Village of Taos Ski Valley, with large high-severity patches (>640 ha). Low-severity, frequent (9–29-year median interval) surface fires burned on the south aspects in nearby lower elevation dry conifer forests in all watersheds. Fires were associated with drought during the fire year. Widespread fires commonly burned synchronously in multiple watersheds during more severe drought years, preceded by wet years, including fire in all three watersheds in 1664, 1715, and 1842. In contrast, recent local “large” wildfires have only burned within single watersheds and may not be considered large in a historical context. Management to promote repeated low-severity fires and the associated open stand structures is within the historical range of variability in the dry conifer forests of these watersheds. In the high-elevation, subalpine forests, different management approaches are needed, which balance ecological and socioeconomic values while providing public safety.


Diversity ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 364
Author(s):  
Chad T. Hanson ◽  
Tonja Y. Chi

In the western U.S., the black-backed woodpecker has been found to be associated with dense montane conifer forests with high snag densities, typically resulting from moderate- to high-severity wildland fires. However, black-backed woodpeckers are occasionally also detected nesting in unburned forests, raising questions about the type of habitat in which they nest and the potential abundance of such habitat. We conducted intensive black-backed woodpecker nest density surveys in large plots within the middle/upper-montane conifer forests of the Sierra Nevada, California, within general (undisturbed) forests, snag forest habitat from moderate/high-severity wildland fire, and unburned snag forest habitat from drought and native bark beetles. We found black-backed woodpeckers nesting only in the two snag forest conditions, mostly in burned snag forest, and their preferential selection of burned snag forest was statistically significant. No nest was found in general forests. Our spatial analysis indicates that snag forest is rare in the forests of the Sierra Nevada due to fire suppression and logging, raising concerns regarding small population size, which we estimate to be only 461 to 772 pairs in the Sierra Nevada.


2019 ◽  
Vol 66 (2) ◽  
pp. 157-177
Author(s):  
Theresa B Jain ◽  
Jeremy S Fried ◽  
Sara M Loreno

Abstract Nine multipurpose silvicultural treatments, formulated as a synthesis of recently implemented prescriptions offered by forest managers, were simulated to evaluate their effectiveness at enhancing fire resistance. The Forest Vegetation Simulator was applied, within the BioSum Framework, on over 3,000 Forest Inventory and Analysis plots representing 5 million hectares of dry mixed conifer forests in eastern Washington and Oregon and California’s Sierra Nevada Mountains. We developed a composite fire-resistance score based on four fuel modification principals and metrics: fuel strata gap, canopy bulk density, proportion of basal area in resistant species, and predicted tree survival. The trajectories of stands with and without treatment were compared to evaluate effectiveness immediately post-treatment, and over the three decades that followed. Seventy percent of these forests could be effectively treated in the short term by at least one prescription. Pretreatment forest condition, particularly fire-resistant species abundance, strongly influenced short-term treatment success, and the post-treatment stand dynamics that limit treatment longevity. Treatment effectiveness endured only 10 or 20 years, depending on fire-resistant species abundance, owing to growing space for crown expansion generated by treatment plus regeneration and release and growth of understory tree strata.


2019 ◽  
Vol 39 (2) ◽  
pp. 173-191 ◽  
Author(s):  
Yann Salmon ◽  
Lars Dietrich ◽  
Sanna Sevanto ◽  
Teemu Hölttä ◽  
Masako Dannoura ◽  
...  

Abstract On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.


Sign in / Sign up

Export Citation Format

Share Document