scholarly journals Pollination Potential of Riparian Hardwood Forests—A Multifaceted Field-Based Assessment in the Vistula Valley, Poland

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 907
Author(s):  
Andrzej N. Affek ◽  
Edyta Regulska ◽  
Ewa Kołaczkowska ◽  
Anna Kowalska ◽  
Katarzyna Affek

Riparian forests with oaks, ashes and elms, now highly fragmented and rare in Europe, are considered hotspots for ecosystem services. However, their capacity to provide pollination seems to be quite low, although reports from in-situ research supporting this view are scarce. Our goal was therefore to thoroughly assess their pollination potential based on multifaceted field measurements. For this, we selected six test sites with well-developed riparian hardwood forests, located in the agricultural landscape along the middle Vistula River in Poland. We used seven indicators relating to habitat suitability (nesting sites and floral resources) and pollinator abundance (bumblebees and other Apoidea) and propose a threshold value (AdjMax) based on value distribution and Hampel’s test to indicate the level of pollination potential for this type of riparian forest. The obtained AdjMax for bumblebee density was 500 ind. ha−1, for Apoidea abundance—0.42 ind. day−1, while for nectar resources—200 kg ha−1. We demonstrate that the investigated small patches of the riparian hardwood forest have a higher pollination potential than reported earlier for riparian and other broadleaved temperate forests, but the indicators were inconsistent. As forest islands in the agricultural landscape, riparian hardwood forests play an important role in maintaining the diversity and abundance of wild pollinators, especially in early spring when there is still no food base available elsewhere.

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1973
Author(s):  
Emilia Karamuz ◽  
Renata J. Romanowicz

Inter-annual variability of hydro-meteorological variables indirectly influence soil moisture conditions in winter and early spring seasons. The interactions between temperature changes and drought conditions are studied by an application of statistical analyses of minimum temperature (Tmin), consecutive days with temperature exceeding the 0 °C threshold value, the number of melting pulses in the winter season and Standardized Evaporation Precipitation Index (SPEI). Additionally, shifts in the onset of days with spring temperature and snow cover occurrence are analysed. A Mann–Kendall test is applied for the trend analysis. Studies have shown significant changes in thermal characteristics in the winter season over the past 70 years, which affect the moisture conditions in the Vistula River Basin. As a result of those changes, the Vistula Basin is more prone to droughts.


Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 405
Author(s):  
Harper McMinn-Sauder ◽  
Rodney Richardson ◽  
Tyler Eaton ◽  
Mike Smith ◽  
Reed Johnson

A present goal of the Conservation Reserve Program (CRP) is to manage land in agricultural landscapes to increase pollinator abundance and diversity. CP42, or the pollinator seed mix, is planted and managed to support foraging pollinators with blooming flowers present at all points in the foraging season. This high-quality habitat provides an excellent opportunity to study honey bee nutrition and determine whether honey bees located near CRP sites use known resources included in planting seed mixes. This study aims to highlight the primary sources of honey bee forage in the northern Midwest as well as to assess honey bee utilization of the floral resources provided by the pollinator seed mix used for CRP plantings. We received pollen samples collected using pollen traps by beekeepers in Ohio, South Dakota, Indiana, Illinois, and Michigan. Metabarcoding methods were used to identify and quantify pollen collected at different points in the season. The results indicate that honey bees frequently used major mass flowering resources such as Glycine, Trifolium, and Symphiotrichum throughout the season. In addition, flowers included in the CRP pollinator seed mix were used modestly. These results have implications for pollinator seed mix design.


2015 ◽  
Vol 21 (1) ◽  
pp. 60 ◽  
Author(s):  
Anita F. Keir ◽  
Richard G. Pearson ◽  
Robert A. Congdon

Remnant habitat patches in agricultural landscapes can contribute substantially to wildlife conservation. Understanding the main habitat variables that influence wildlife is important if these remnants are to be appropriately managed. We investigated relationships between the bird assemblages and characteristics of remnant riparian forest at 27 sites among sugarcane fields in the Queensland Wet Tropics bioregion. Sites within the remnant riparian zone had distinctly different bird assemblages from those of the forest, but provided habitat for many forest and generalist species. Width of the riparian vegetation and distance from source forest were the most important factors in explaining the bird assemblages in these remnant ribbons of vegetation. Gradual changes in assemblage composition occurred with increasing distance from source forest, with species of rainforest and dense vegetation being replaced by species of more open habitats, although increasing distance was confounded by decreasing riparian width. Species richness increased with width of the riparian zone, with high richness at the wide sites due to a mixture of open-habitat species typical of narrower sites and rainforest species typical of sites within intact forest, as a result of the greater similarity in vegetation characteristics between wide sites and the forest proper. The results demonstrate the habitat value for birds of remnant riparian vegetation in an agricultural landscape, supporting edge and open vegetation species with even narrow widths, but requiring substantial width (>90 m) to support specialists of the closed forest, the dominant original vegetation of the area.


2008 ◽  
Vol 5 (4) ◽  
pp. 581-623
Author(s):  
I. P. Chubarenko ◽  
N. Y. Demchenko

Abstract. Seasonal cascades down the coastal slopes and intra-layer convection are considered as the two mechanisms contributing to the Baltic Sea cold intermediate layer (CIL) formation. On the base of TS-diagrams, mean-annual and real-time temperature profiles, the CIL features are re-analyzed. The presence within the CIL of water with temperature below that of maximum density (Tmd) and that at the local surface allows tracing its formation. Field measurements are presented, showing specific features of denser water formation in marine environment. It is argued that such cascades formed during early spring heating (March–April) – before reaching the Tmd – are the source of the coldest waters of the CIL. Fast increase of the open water heat content during further spring heating indicates that horizontal exchange rather than direct solar heating is responsible for that. When the surface is covered with water, heated above the Tmd, the conditions within the CIL become favorable for intralayer convection due to the presence of waters of Tmd in intermediate layer, which can explain the observed increase of its salinity and deepening with time.


2020 ◽  
Vol 22 (6) ◽  
pp. 1865-1878 ◽  
Author(s):  
David Kreutzweiser ◽  
David Dutkiewicz ◽  
Scott Capell ◽  
Paul Sibley ◽  
Taylor Scarr

2009 ◽  
Vol 257 (3) ◽  
pp. 1136-1147 ◽  
Author(s):  
Joseph O. Sexton ◽  
Tyler Bax ◽  
Paul Siqueira ◽  
Jennifer J. Swenson ◽  
Scott Hensley

2019 ◽  
Vol 11 (16) ◽  
pp. 1857 ◽  
Author(s):  
W. Dean Hively ◽  
Jacob Shermeyer ◽  
Brian T. Lamb ◽  
Craig T. Daughtry ◽  
Miguel Quemada ◽  
...  

A unique, multi-tiered approach was applied to map crop-residue cover on the Eastern Shore of the Chesapeake Bay, United States. Field measurements of crop-residue cover were used to calibrate residue mapping using shortwave infrared (SWIR) indices derived from WorldView-3 imagery for a 12-km × 12-km footprint. The resulting map was then used to calibrate and subsequently classify crop residue mapping using Landsat imagery at a larger spatial resolution and extent. This manuscript describes how the method was applied and presents results in the form of crop-residue cover maps, validation statistics, and quantification of conservation tillage implementation in the agricultural landscape. Overall accuracy for maps derived from Landsat 7 and Landsat 8 were comparable at roughly 92% (+/− 10%). Tillage class-specific accuracy was also strong and ranged from 75% to 99%. The approach, which employed a 12-band image stack of six tillage spectral indices and six individual Landsat bands, was shown to be adaptable to variable soil-moisture conditions—under dry conditions (Landsat 7, 14 May 2015) the majority of predictive power was attributed to SWIR indices, and under wet conditions (Landsat 8, 22 May 2015) single band reflectance values were more effective at explaining variability in residue cover. Summary statistics of resulting tillage class occurrence matched closely with conservation tillage implementation totals reported by Maryland and Delaware to the Chesapeake Bay Program. This hybrid method combining WorldView-3 and Landsat imagery sources shows promise for monitoring progress in the adoption of conservation tillage practices and for describing crop-residue outcomes associated with a variety of agricultural management practices.


2015 ◽  
Vol 37 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Kinga Kostrakiewicz-Gierałt

Abstract The effect of site conditions on the abundance of populations of I. glandulifera, selected individual features (height and width of stems, number of whorls and side branches, flower production), and floral traits (total length of flowers, length and width of lower sepal, spur length) were investigated in years 2013-14. Observations were conducted on fallow land, at roadsides, along riverbanks and edges of a riparian forest as well as in a willow thicket and a riparian forest inside located in the Vistula River valley in southern Poland. In these stands, taken successively, light availability gradually diminished, while plant canopy height and soil moisture increased. The low abundance of the population on the fallow land may have been caused by low soil humidity triggering seedling mortality, whereas the low abundance in the interior of the riparian forest may have been due to seasonal water stagnation hampering the development of offspring. The increasing values of individual traits from the fallow land to riparian forest edge might be linked to growing lateral shade, whereas the much lower values in the willow thicket and forest interior might be caused by full shade. Individuals growing on the fallow land, at roadsides, and along riverbanksproduced flowers with small total lengths and large lower sepals and spurs, whereas individuals occurring in willow thickets and riparian forests showed opposite tendency. The considerable stem dimensions and substantial production of large flowers may augment chances for successful resource capture and pollinator visits in open sites, while the reduced size of individuals and moderate production of small flowers may be sufficient for the maintenance of populations in closed habitats


Sociobiology ◽  
2017 ◽  
Vol 64 (1) ◽  
pp. 18 ◽  
Author(s):  
Mudssar Ali ◽  
Asif Sajjad ◽  
Shafqat Saeed

The yearlong association of two native honey bee species (Apis dorsata and A. florea) with 49 plant species was recorded in a planted forest and adjacent agricultural landscape at Multan, Pakistan. The study resulted in 588 interactions of A. dorsata with 40 plant species and 454 interactions of A. florea on 38 plant species. The most visited plants species by A. dorsata included Helianthus annuus, Citrus reticulata, Trifolium alexandrinum, Moringa oleifera and Calotropis procera, while the most visited plant species by A. florea included C. procera, Mangifera indica, T. alexandrinum, Coriandrum sativum and H. annuus. The peak abundance of bees and floral resources (i.e. number of plant species in flowering and abundance of floral units) was recorded during early March to late May followed by a gradual decline until December. Monthly abundance of both bee species was positively related to the floral resources, negatively related to relative humidity while it was not significantly related to temperature. The current study may serve as a baseline to track the degradation in ecosystem service of cross pollination and making new conservation strategies at local scale while future research should focus on tempo-spatial variations in foraging preferences, floral constancy and effect of foraging competition on crop pollination in different ecological regions of Pakistan.


2021 ◽  
Author(s):  
Hollie Blaydes ◽  
Alona Armstrong ◽  
Duncan Whyatt ◽  
Simon Potts ◽  
Emma Gardner

<p>Solar photovoltaics (PV) is projected to become the dominant renewable, with much capacity being installed as ground-mounted solar parks. Land use change for solar can affect ecosystems across various spatial scales and solar parks offer a unique opportunity for ecological enhancement. One compelling potential benefit put in practice by the solar industry is management for insect pollinators. Specifically, solar parks can provide refuge for pollinators through the provision of suitable habitat, potentially contributing to halting and reversing widespread declines recorded in a number of pollinator groups. There is scope to both manage and design solar parks for pollinators, but understanding is limited. Using a combination of GIS and a process-based pollinator model, we explore how solar park size, shape and management could affect ground-nesting bumblebee abundance inside solar parks and surrounding landscapes in the UK. We show that within solar parks, the floral resources provided by different management practices is a key factor affecting bumblebee abundance, but the impacts are dependent on landscape context. In comparison, solar park size and shape have a lesser impact. Moreover, the effects of both solar park management and design extend into the surrounding landscape, affecting bumblebee abundance up to 1 km away from the solar park. If designed and managed optimally, solar parks therefore have the potential to boost local pollinator abundance and pollination services to surrounding land. Our results demonstrate how incorporating biodiversity into solar park design and management decisions could benefit groups such as pollinators and contribute to the wider environmental sustainability of solar parks.</p>


Sign in / Sign up

Export Citation Format

Share Document