scholarly journals Variation in Carbon Content among the Major Tree Species in Hemiboreal Forests in Latvia

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1292
Author(s):  
Arta Bārdule ◽  
Jānis Liepiņš ◽  
Kaspars Liepiņš ◽  
Jeļena Stola ◽  
Aldis Butlers ◽  
...  

This study was designed to estimate the variation in non-volatile carbon (C) content in different above- and belowground tree parts (stem, living branches, dead branches, stumps, coarse roots and small roots) and to develop country-specific weighted mean C content values for the major tree species in hemiboreal forests in Latvia: Norway spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), birch spp. (Betula spp.) and European aspen (Populus tremula L.). In total, 372 sample trees from 124 forest stands were selected and destructively sampled. As the tree samples were pre-treated by oven-drying before elemental analysis, the results of this study represent the non-volatile C fraction. Our findings indicate a significant variation in C content among the tree parts and studied species with a range of 504.6 ± 3.4 g·kg−1 (European aspen, coarse roots) to 550.6 ± 2.4 g·kg−1 (Scots pine, dead branches). The weighted mean C content values for whole trees ranged from 509.0 ± 1.6 g·kg−1 for European aspen to 533.2 ± 1.6 g·kg−1 for Scots pine. Only in Norway spruce was the whole tree C content significantly influenced by tree age and size. Our analysis revealed that the use of the Intergovernmental Panel on Climate Change (IPCC) default C content values recommended for temperate and boreal ecological zones leads to a 5.1% underestimation of C stock in living tree biomass in Latvia’s forests. Thus, the country-specific weighted mean C content values for major tree species we provide may improve the accuracy of National Greenhouse Gas Inventory estimates.

Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 495 ◽  
Author(s):  
Lars Drössler ◽  
Eric Agestam ◽  
Kamil Bielak ◽  
Małgorzata Dudzinska ◽  
Julia Koricheva ◽  
...  

Pine-spruce forests are one of the commonest mixed forest types in Europe and both tree species are very important for wood supply. This study summarized nine European studies with Scots pine and Norway spruce where a mixed-species stand and both monocultures were located in an experimental set-up. Overyielding (where growth of a mixed stand was greater than the average of both monocultures) was relatively common and often ranged between 0% and 30%, but could also be negative at individual study sites. Each individual site demonstrated consistent patterns of the mixing effect over different measurement periods. Transgressive overyielding (where the mixed-species stand was more productive than either of the monocultures) was found at three study sites, while a monoculture was more productive on the other sites. Large variation between study sites indicated that the existing experiments do not fully represent the extensive region where this mixed pine-spruce forest can occur. Pooled increment data displayed a negative influence of latitude and stand age on the mixing effect of those tree species in forests younger than 70 years.


2009 ◽  
Vol 33 (-1) ◽  
pp. 49-57 ◽  
Author(s):  
Edward Feliksik ◽  
Sławomir Wilczyński

The Effect of Climate on Tree-Ring Chronologies of Native and Nonnative Tree Species Growing Under Homogenous Site ConditionsDendroclimatic studies were carried out in the experimental stands composed of many tree species situated in the Polish part of the Baltic sea-coast. Increment cores were taken from a 100-years old trees of 2 native species: Norway spruce (Picea abies (L.) Karst.), and Scots pine (Pinus sylvestrisL.) and 3 nonnative species: Douglas fir (Pseudotsuga menziesii(Mirb.) Franco), Sitka spruce (Picea sitchensis(Bong.) Carr.) and Silver fir (Abies albaMill.). Thirty trees of each species were cored. The relationships between the diameter increment and the thermal and pluvial conditions during the period from 1925 to 2005 were analyzed on the basis of standardized tree-ring chronologies and climatic data. It was found that precipitation and temperature of the growing season and months preceding that season affected the annual diameter increment of all investigated tree species. The current year winter and early spring temperatures as well as February and August precipitation had a similar effect on the variation of diameter increment of trees. On the other hand thermal and pluvial conditions of the current year June differentiated the increment rhythm of individual species. A very strong negative effect on diameter growth of trees was observed in the case of winter and early spring frosts. Norway spruce turned out to be a species most resistant to low temperatures. The investigated tree species, especially Norway spruce, was susceptible to water deficiency in the soil during spring and summer. In the case of Scots pine a high precipitation in June stimulated its growth. The diameter increments of Douglas fir, Sitka spruce, Scots pine, and Silver fir were more strongly connected with air temperature than with precipitation. So called all-species chronology of tree-ring width, constructed during this study, permitted to verify the factors having a similar effect on growth response of the investigated tree species. It reflected the mutual characteristics of diameter increments of trees of various species.


2020 ◽  
Vol 47 (1) ◽  
pp. 1-9
Author(s):  
Milan Barna ◽  
Angel Ferezliev ◽  
Hristo Tsakov ◽  
Ivan Mihál

AbstractWe investigated the current health condition (defoliation), state of natural regeneration, and mycoflora and phytopathogen-caused attacks in Scots pine forests (Pinus sylvestris L.) planted in the 1960s in areas affected by wind disturbances in the West Rhodope Mountains in Bulgaria. Some damage types (resin outflow and anthropogenic damage) were present to a low extent in the research plots (S – Selishte and PK – Pobit Kamak). Some were missing completely (damage by deer and other animals, the presence of lignicolous fungi and abiotic damage). The most important results of this study were the following: i) the occurrence of the bark beetle pest Tomicus minor Hartig (Coleoptera, Scolytinae) was recorded on average in 4.6 (S) and 2.3 (PK) of fallen shoots under the tree crown within 1 m diameter around the stem; ii) significant damage to tree crowns due to the loss of assimilation organs in Scots pine trees (28% – S and 39% – PK, respectively) was several times higher than that recorded in Norway spruce (Picea abies L.) (10%); iii) tree species composition resulting from natural regeneration showed 95–100% proportion of Norway spruce despite the predominance of Scots pine in the maternal stand. These observations might provide evidence of unsuitable environmental conditions in the studied localities for pine forests on the southern range of the natural P. sylvestris occurrence. Forest management in similar ecological and climatic conditions should aim at significant diversification of the forest stand structure by utilizing tree species suitable for the given ecosystems.


2013 ◽  
Vol 290 ◽  
pp. 40-48 ◽  
Author(s):  
Sofie Hellsten ◽  
Heljä-Sisko Helmisaari ◽  
Ylva Melin ◽  
Jens Peter Skovsgaard ◽  
Seija Kaakinen ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 73 ◽  
Author(s):  
Steffi Heinrichs ◽  
Christian Ammer ◽  
Martina Mund ◽  
Steffen Boch ◽  
Sabine Budde ◽  
...  

Tree species diversity can positively affect the multifunctionality of forests. This is why conifer monocultures of Scots pine and Norway spruce, widely promoted in Central Europe since the 18th and 19th century, are currently converted into mixed stands with naturally dominant European beech. Biodiversity is expected to benefit from these mixtures compared to pure conifer stands due to increased abiotic and biotic resource heterogeneity. Evidence for this assumption is, however, largely lacking. Here, we investigated the diversity of vascular plants, bryophytes and lichens at the plot (alpha diversity) and at the landscape (gamma diversity) level in pure and mixed stands of European beech and conifer species (Scots pine, Norway spruce, Douglas fir) in four regions in Germany. We aimed to identify compositions of pure and mixed stands in a hypothetical forest landscape that can optimize gamma diversity of vascular plants, bryophytes and lichens within regions. Results show that gamma diversity of the investigated groups is highest when a landscape comprises different pure stands rather than tree species mixtures at the stand scale. Species mainly associated with conifers rely on light regimes that are only provided in pure conifer forests, whereas mixtures of beech and conifers are more similar to beech stands. Combining pure beech and pure conifer stands at the landscape scale can increase landscape level biodiversity and conserve species assemblages of both stand types, while landscapes solely composed of stand scale tree species mixtures could lead to a biodiversity reduction of a combination of investigated groups of 7 up to 20%.


2010 ◽  
Vol 161 (11) ◽  
pp. 450-459 ◽  
Author(s):  
Thomas Wohlgemuth ◽  
Christoph Hester ◽  
Anna-Regula Jost ◽  
Ulrich Wasem ◽  
Barbara Moser

After the intensive forest fire near Leuk, in 2003 the question arose whether and how fast the forest would regenerate. To answer this question, we observed the recolonisation by plants in the 300 ha of burned area annually from 2004 to 2008, using a set of permanently installed and systematically arranged sample plots of 200 m2 (n = 151). Five years after the fire, natural regeneration of the trees at altitudes above 1,700 m attains a density of 1,760 stems/ha, wich is comparable with results found after the forest fire in Val Müstair (Graubünden) in 1983, or after windthrow “Vivian” in 1990 in the Northern Prealps. The most frequent tree species are the pioneers, namely the European aspen (Populus tremula), large-leaved willow and goat willow (Salix appendiculata and S. caprea). Norway spruce (Picea abies) and European larch (Larix decidua) are present in small numbers. Natural regeneration is smaller at middle and lower altitudes, with roughly 1,160 stems/ha at altitudes between 1,300 and 1,700 m, and 700 stems/ha below 1,300 m. Here in many places pubescent oak (Quercus pubescens) regenerates itself with coppice shoots. Scots pine (Pinus sylvestris) regenerates only sparsely. By applying Ripley's K-function to triangle plots, we found that regeneration is significantly clumped in 79% of the plots having more than ten trees of at least 25 cm of height. Spatial aggregation often starts at very short distances between trees, and is observable both within and between species. Five years after the forest fire, we can confirm that forest will regenerate at all altitudes. The first forest phase will be bush forest.


2014 ◽  
Vol 25 (3-4) ◽  
pp. 14-23
Author(s):  
Y. I. Chykailo ◽  
I. M. Voloshin

In the article, the eco-geochemical analysis of flora on roadside areas of highway M-10 Lviv-Krakovets is made. In the foliage of following tree species Common hornbeam (Carpinus betulus L.), English oak (Quercus robur L.), Common beech (Fagus sylvatica L.), Common ash (Fraxinus excelsior L.), Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.), using atomic-absorption methods, there were revealed such heavy metals as Pb, Zn, Co, Cu, Ni, Mo, Cr, Mn, V, Ba, Sr, Zr, Fe, Ti, Sn. The analysis of literary sources by Voloshyn, Sobechko, Bessonova and ours investigations reveals that in different areas the content of heavy metals (HM) in the foliage of tree species differs significantly. In addition, it has been investigated the content of chemicals in the foliage of roadside trees along highway Lviv-Krakovets and compared with world clarke indices. Content of Pb, Zn, Mn, V in the foliage of roadside trees is lower than showing of world clarkes, what is caused by characteristics of parent rocks. Elements that exceed world clarkes are Ba, Cu, Ni, Mo, Sr, Ti, Zr and Cr, their content in foliage of tree species varies from 1,2 to 16,7 mg/kg of dry weight. In the article, the accumulation coefficients are calculated. These coefficients confirm accumulation of car pollutants in roadsides and adjoining areas. There is made an investigation of general biological and discrete (by root surface and foliage surface) absorption of 15 chemical elements and as a result several species, which have the highest accumulation coefficients, are set apart. In the foliage of roadside tree species, the general biological absorption coefficients (GBAC) of technogenic (road) pollutants are counted. It has been determined that the maximum GBAC values immanent to Ni and Ва are 10,1 and 3,5 correspondingly (Common hornbeam), Cu – 7,7, Mn – 2,7 and Мо – 1,4 (English oak) and Sr – 1,4 (Common ash). According to the content and distribution of heavy metals in the foliage of roadside trees, it was build the descending rows according to intensity of HM absorption by different tree species. It has been counted the intensity with what tree species absorb road pollutants, Pb absorbs Common ash, Scots pine, Zn, Co, Cr, Sr – Common ash; Ni, Ba – Common hornbeam; Cu, Mo, Mn, V, Zr – English oak; Fe, Ti – Norway spruce. It has been counted the discrete (areal and root) absorption of HM by tree species. It is known from literary sources that foliage does not accumulate Pb by areal way, that is why the value of this HM is considered as constants and according to certain methodological ways is counted areal and root absorption. The discrete biological absorption coefficients (DBAC) of technogenic (road) pollutants by different tree species in roadsides are different. Deciduous tree species in contrast to pinophyta, by areal way accumulate Mо – 0,33 (Common hornbeam) – 0,95 (English oak), partially V – 0,17 (English oak), Zn – 0,14 (Norway spruce). DBAC Со in foliage of tree species varies from 0,33 (English oak) to 0,73 (Common beech), Cu – 0,52 (Scots pine) – 0,99 (English oak, Common hornbeam), Ni – 0,23 (Scots pine) – 0,99 (Common hornbeam, English oak, Common beech, Norway spruce), Mn – 0,61 (Common ash) – 0,98 (English oak, Norway spruce), Ва – 0,43 (Common hornbeam) – 0,92 (English oak, Norway spruce), Sr – 0,64 (Common hornbeam) – 0,94 (English oak, Norway spruce). The most actively foliage absorbs Cu, Ni, Mn, Со (in 100 % of samples); partially  –  Ba, Sr (80 %); Mo (40 %); V і Zn (20 і 10 %). It has been proposed several tree species for forest plantation, which have the highest biological absorption. The highest intensity of general biological absorption of HM have English oak, Common hornbeam, Common ash, Common beech, Norway spruce, which absorbs Ni, Cu, Ba, Mn, Sr, Mo, Co, Fe, and this considerably reduce pollution in roadsides and adjoining areas.


2012 ◽  
Vol 52 (No. 8) ◽  
pp. 337-347
Author(s):  
M. Křepela ◽  
R. Petráš

In this article the stem shape is compared in three coniferous tree species: Norway spruce, Scots pine and European larch. Stem is investigated by means of geometrical methods. Simplified Bookstein coordinates (stem shape diameters) and Procrustes coordinates were used for variability investigation. The material, originating from the Czech and Slovak territories, involved in total 3,346 spruce stems, 3,082 pine stems and 1,403 larch stems. The accordance of mean stem vectors was assessed by means of Hotelling&rsquo;s T<sup>2</sup> two-sample test. For stem shape diameters and Procrustes tangent coordinates, the variability was examined using the method of principal components analysis. The three most important principal components were diagrammatized and described. The relationship between the stem shape and its size was also investigated, and inflection points of morphological stem curve were described for all three tree species.


Sign in / Sign up

Export Citation Format

Share Document