scholarly journals Effect of Heavy Machine Traffic on Soil CO2 Concentration and Efflux in a Pinus koraiensis Thinning Stand

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1497
Author(s):  
Ikhyun Kim ◽  
Sang-Kyun Han ◽  
Mauricio Acuna ◽  
Heesung Woo ◽  
Jae-Heun Oh ◽  
...  

Mechanized timber harvesting is cost efficient and highly productive. However, mechanized harvesting operations are often associated with several environmental problems, including soil compaction and disturbance. Soil compaction impedes air circulation between the soil and atmosphere, which in turn results in increased concentrations of CO2 within soil pores. In this study, we investigated the impact of forest machine traffic on soil conditions to determine soil CO2 efflux (Fc), and soil CO2 concentrations (Sc). Field measurements included soil bulk density (BD), soil temperature (ST), soil water content (SWC), Fc, and Sc over a 3-year period at a specific thinning operation site (Hwacheon-gun) in the Gangwon Province of Korea. To assess the soil impacts associated with machine traffic, we established four machine-treatment plots (MT) characterized by different geographical and traffic conditions. The results revealed that BD, Sc, and SWC increased significantly on the disturbed track areas (p < 0.05). Furthermore, reduced soil Fc values were measured on the soil-compacted (machine disturbed) tracks in comparison with undisturbed (control) areas. Variations in BD, SWC, and Sc were significantly different among the four MT plots. Additionally, in comparison with undisturbed areas, lower Fc and higher Sc values were obtained in compacted areas with high soil temperatures.

2014 ◽  
Vol 60 (Special Issue) ◽  
pp. S1-S8
Author(s):  
J. Jobbágy ◽  
P. Findura ◽  
F. Janík

The analysis of soil compaction with chassis of a wide-span irrigation machine Valmont was determined. The sprinkler had 12 two-wheeled chassis (size of tyre 14.9'' &times; 24''). During the evaluation of soil compaction, we monitored the values of penetration resistance and soil moisture during the operation of the sprinkler. Considering the performance parameters of the pump, the sprinkler was only half of its length (300 m) in the technological operation. In this area, also field measurements were performed in 19 monitoring points spaced both in tracks and outside the chassis tracks. The analysis showed the impact of compression with sprinkler wheels. The correction of obtained results of penetration resistance was applied in connection with soil moisture (mass) values according to Act No. 220/2004 (Lhotsk&yacute; et al. 1985). The results of average resistance ranged from 1.2 to 3.26 MPa. The values of the max. resistance ranged from 2.3 to 5.35 MPa. The results indicated a shallow soil compaction; however, it is not devastating.


2003 ◽  
Vol 40 (1) ◽  
pp. 127-138 ◽  
Author(s):  
D. J. NIXON ◽  
L. P. SIMMONDS

There are currently concerns within some sugar industries that long-term monoculture has led to soil degradation and consequent yield decline. An investigation was conducted in Swaziland to assess the effects of fallowing and green manuring practices, over a seven-month period, on sugarcane yields and the physical properties of a poorly draining clay soil. In the subsequent first sugarcane crop after planting, yields were improved from 129 t ha−1 under continuous sugarcane to 141–144 t ha−1 after fallowing and green manuring, but there were no significant responses in the first and second ratoon crops. Also, in the first crop after planting, root length index increased from 3.5 km m−2 under continuous sugarcane to 5.2–6.8 km m−2 after fallowing, and improved rooting was still evident in the first ratoon crop where there had been soil drying during the fallow period. Soil bulk density, total porosity and water-holding capacity were not affected by the fallowing practices. However, air-filled porosity increased from 11 % under continuous sugarcane to 16% after fallowing, and steady state ponded infiltration rates were increased from 0.61 mm h−1 to 1.34 mm h−1, but these improvements were no longer evident after a year back under sugarcane. Levels of soil organic matter were reduced in all cases, probably as a result of the tillage operations involved. In the plant crop, root length was well correlated with air-filled porosity, indicating the importance of improving belowground air supply for crop production on poorly draining clay soils.


2004 ◽  
Vol 1 (1) ◽  
pp. 1-9 ◽  
Author(s):  
B. Mortazavi ◽  
J. L. Prater ◽  
J. P. Chanton

Abstract. Three approaches for determining the stable isotopic composition (δ13C and δ18O) of soil CO efflux were compared. A new technique employed mini-towers, constructed of open-topped piping, that were placed on the soil surface to collect soil-emitted CO2. Samples were collected along a vertical gradient and analyzed for CO2 concentration and isotopic composition. These data were then used to produce Keeling plots to determine the δ18O and δ13C of CO2 emitted from the soil. These results were then compared to the δ18O and δ13C of soil-respired CO2 measured with two other techniques: (1) flux chambers and (2) estimation from the application of the diffusional fractionation factor to measured values of below ground soil CO2 and to CO2 in equilibrium with soil water δ18O. Mini-tower δ18O Keeling plots were linear and highly significant (0.81< r 2 > 0.96), in contrast to chamber δ18O Keeling plots, which showed significant curvature, necessitating the use of a mass balance to calculate the δ18O of respired CO2. In the chambers, the values determined for the δ18O of soil respired CO2 approached the value of CO2 in equilibrium with surficial soil water, and the results were significantly δ18O enriched relative to the mini-tower results and the δ18O of soil CO2 efflux determined from soil CO2. There were close agreements between the three methods for the determination of the δ13C of soil efflux CO2. Results suggest that the mini-towers can be effectively used in the field for determining the δ18O and the δ13C of soil-respired CO2.


2006 ◽  
Vol 36 (3) ◽  
pp. 601-614 ◽  
Author(s):  
Mason C Carter ◽  
Thomas J Dean ◽  
Ziyin Wang ◽  
Ray A Newbold

At four sites in the Gulf Coastal Plain, mechanical whole-tree harvesting (MWT) removed more biomass and nutrients than hand-fell bole-only harvesting (HFBO). Soil compaction and loblolly pine (Pinus taeda L.) regeneration growth varied among sites. At one location, MWT increased soil bulk density by 0.1 Mg·m–3, from 1.14 to 1.24 Mg·m–3, with no effect on tree growth. At a second location, where bulk density increased by 0.1 Mg·m–3, from 1.41 to 1.51 Mg·m–3, pine growth was reduced significantly. Soil strength at 15–20 cm depth increased by 0.3–0.5 MPa at both locations. However, where MWT reduced pine growth, herbaceous weed control mitigated the effect. Fertilization with N and P, where P was limiting, increased pine growth irrespective of other treatments. Where P was not limiting, addition of a complete fertilizer reduced the mitigating effect of weed control. Bedding reduced soil compaction without improving early tree growth; however, bedding was not tested on the two sites where soil compaction appeared to be at critical levels. Broadcast burning increased survival but reduced pine growth irrespective of harvesting method. Our results suggest that the impact of intensive management on site productivity varies among sites, is potentially accumulative, and is subject to change over time.


Author(s):  
Dmitrii Lepilin ◽  
Annamari (Ari) Laurén ◽  
Jori Uusitalo ◽  
Raija Laiho ◽  
Hannu Fritze ◽  
...  

In the boreal region, peatland forests are a significant resource of timber. Under pressure from a growing bioeconomy and climate change, timber harvesting is increasingly occurring over unfrozen soils. This is likely to cause disturbance in the soil biogeochemistry. We studied the impact of machinery-induced soil disturbance on the vegetation, microbes, and soil biogeochemistry of drained boreal peatland forests caused by machinery traffic during thinning operations. To assess potential recovery, we sampled six sites that ranged in time since thinning from a few months to 15 years. Soil disturbance directly decreased moss biomass and led to an increase in sedge cover and a decrease in root production. Moreover, soil CO2 production potential, and soil CO2 and CH4 concentrations were greater in recently disturbed areas than in the control areas. In contrast, CO2 and CH4 emissions, microbial biomass and structure, and the decomposition rate of cellulose appeared to be uncoupled and did not show signs of impact. While the impacted properties varied in their rate of recovery, they all fully recovered within 15 years covered by our chronosequence study. Conclusively, drained boreal peatlands appeared to have high biological resilience to soil disturbance caused by forest machinery during thinning operations.


2020 ◽  
Vol 12 (7) ◽  
pp. 2874 ◽  
Author(s):  
Hadi Sohrabi ◽  
Meghdad Jourgholami ◽  
Mohammad Jafari ◽  
Naghi Shabanian ◽  
Rachele Venanzi ◽  
...  

Minimizing the impact of timber harvesting on forest stands and soils is one of the main goals of sustainable forest operation (SFO). Thus, it is necessary to make an accurate assessment of forest operations on soil that is based on the SFO perspective. The present study was conducted according to SFO principles to investigate the time required for the natural recovery of soil after disturbance by skidding operations in some Iranian forests. The physical, chemical, and biological properties of soil found in abandoned skid trails from different time periods were compared with undisturbed forest soils. The soil bulk density, the penetration resistance, and the microporosity of a 25-year-old skid trail were 8.4–27.4% and 50.4% greater, and the total porosity, macroporosity, and soil moisture were 1.9–17.1% and 4.6% lower than the undisturbed area. In a 25-year-old skid trail, the values of pH, Electrical conductivity (EC), C, N, available P, K, Ca, and Mg, earthworm density, and biomass were lower than in the undisturbed area, and the C/N ratio value was higher than in the undisturbed area. High traffic intensity and slope classes of 20–30% in a three-year-old skid trail had the greatest impact on soil properties. In order to have sustainable timber production, SFO should be developed and soil recovery time should be reduced through post-harvest management operation.


2010 ◽  
Vol 7 (3) ◽  
pp. 1031-1041 ◽  
Author(s):  
O. Joos ◽  
F. Hagedorn ◽  
A. Heim ◽  
A. K. Gilgen ◽  
M. W. I. Schmidt ◽  
...  

Abstract. Current climate change models predict significant changes in rainfall patterns across Europe. To explore the effect of drought on soil CO2 efflux (FSoil) and on the contribution of litter to FSoil we used rain shelters to simulate a summer drought (May to July 2007) in an intensively managed grassland in Switzerland by reducing annual precipitation by around 30% similar to the hot and dry year 2003 in Central Europe. We added 13C-depleted as well as unlabelled grass/clover litter to quantify the litter-derived CO2 efflux (FLitter). Soil CO2 efflux and the 13C/12C isotope ratio (δ13C) of the respired CO2 after litter addition were measured during the growing season 2007. Drought significantly decreased FSoil in our litter addition experiment by 59% and FLitter by 81% during the drought period itself (May to July), indicating that drought had a stronger effect on the CO2 release from litter than on the belowground-derived CO2 efflux (FBG, i.e. soil organic matter (SOM) and root respiration). Despite large bursts in respired CO2 induced by the rewetting after prolonged drought, drought also reduced FSoil and FLitter during the entire 13C measurement period (April to October) by 26% and 37%, respectively. Overall, our findings show that drought decreased FSoil and altered its seasonality and its sources. Thus, the C balance of temperate grassland soils respond sensitively to changes in precipitation, a factor that needs to be considered in regional models predicting the impact of climate change on ecosystems C balance.


2009 ◽  
Vol 6 (6) ◽  
pp. 11005-11034 ◽  
Author(s):  
O. Joos ◽  
F. Hagedorn ◽  
A. Heim ◽  
A. K. Gilgen ◽  
M. W. I. Schmidt ◽  
...  

Abstract. Current climate change models predict significant changes in rainfall patterns across Europe. To explore the effect of drought on soil CO2 efflux (FSoil) and on the contribution of litter to FSoil we used rainout shelters to simulate a summer drought (May to July 2007) in an intensively managed grassland in Switzerland, and to reduce annual precipitation by around 30% similar to the hot and dry year 2003 in Central Europe. We added 13C-depleted as well as unlabelled grass/clover litter to quantify the litter-derived CO2 efflux (FLitter). Soil CO2 efflux and the 13C/12C isotope ratio (δ13C) of the respired CO2 after litter addition were measured during the growing season 2007. Drought significantly decreased FSoil in our litter addition experiment by 52% and FLitter by 74% during the drought period itself (May to July), indicating that drought had a stronger effect on the CO2 release from litter than on the belowground-derived CO2 efflux (FBG, i.e. soil organic matter (SOM) and root respiration). Despite large bursts in respired CO2 induced by the rewetting after prolonged drought, drought also reduced FSoil and FLitter during the entire 13C measurement period (April to October) by 32% and 33%, respectively. Overall our findings highlight i) the sensitivity of temperate grassland soils to changes in precipitation, a factor that needs to be considered in regional models predicting the impact of climate change, and ii) the need to quantify the response of the different components of soil CO2 efflux to fully understand climate change impacts on ecosystem carbon balance.


Sign in / Sign up

Export Citation Format

Share Document