scholarly journals Tree Diversity and Soil Characteristics in a Tea–Forest Interface in Southwest Sri Lanka

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1506
Author(s):  
Nalaka Geekiyanage ◽  
Srimal Rathnayaka ◽  
Sriyani Gamage ◽  
Adikari Appuhamilage Dulanjala Sandamali ◽  
Shamodi Nanayakkara ◽  
...  

Fragmented and degraded ecosystems should be restored to ensure the biological connectivity among fragmented forest landscapes. The tropical rainforests of Southwestern Sri Lanka are highly degraded and fragmented due to plantation agriculture and human settlements. However, the high spatial variation in environmental factors and ecosystem functions challenge the success rate of restoration interventions. The aim of this study was to assess the vegetation composition and stand structure in relation to the spatial variation in key soil physicochemical parameters in the Endane Biodiversity Corridor that links peripheral forest reserve to the Sinharaja Rainforest Complex (SRC). The site that extends over 24 ha was classified into five land-use categories (productive tea lands, marginal tea lands, scrub—abandoned three years ago, and two woodlands—abandoned 15 years ago) in which the vegetation composition, stand structure, and physicochemical parameters of soil were assessed and mapped. Results revealed that the Shannon diversity index in the scrub and the woodlands were higher than in the tea lands. The diversity among the secondary forest patches was similar. However, with a mean record of 14 species, the species richness was high in sites close to the SRC. In comparison to the SRC (358 Mg ha−1), there was a substantial potential to sequester more carbon in the restoration sites (12–108 Mg ha−1). While explaining 31% of abundance and species distribution, the ordination results revealed a close relationship of the soil parameters to vegetation composition and species abundance. The calculated coefficient variation values for soil parameters (TN, EC, Av.P, Ex.K, OC, and BD) were beyond 12%, indicating high or moderate soil spatial variability among the land use categories. Coefficient of variation for soil pH was estimated to be 9%, revealing low soil spatial variability among the land use categories. The maps of these soil parameters corresponded with the type of land use and fertilizer application to tea fields. The highest and the lowest total N contents were observed in the scrub and woodlands, respectively, which appears to be mediated by the relative composition of N-fixing trees between the two groups. Our results facilitate effective matching of sites to species for restoration of the Endane Biodiversity Corridor that may be replicated in similar restoration contexts in tropical Asia.

Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 41 ◽  
Author(s):  
Guo-Ce Xu ◽  
Zhan-Bin Li ◽  
Peng Li ◽  
Ke-Xin Lu ◽  
Yun Wang

Soil organic carbon (SOC) plays an important role in maintaining and improving soil fertility and quality, in addition to mitigating climate change. Understanding SOC spatial variability is fundamental for describing soil resources and predicting SOC. In this study, SOC content and SOC mass were estimated based on a soil survey of a small watershed in the Dan River, China. The spatial heterogeneity of SOC distribution and the impacts of land-use types, elevation, slope, and aspect on SOC were also assessed. Field sampling was carried out based on a 100 m by 100 m grid system overlaid on the topographic map of the study area, and samples were collected in three soil layers to a depth of 40 cm. In total, 222 sites were sampled and 629 soil samples were collected. The results showed that classical kriging could successfully interpolate SOC content in the watershed. Contents of SOC showed strong spatial heterogeneity based on the values of the coefficient of variation and the nugget ratio, and this was attributed largely to the type of land use. The range of the semi-variograms increased with increasing soil depth. The SOC content in the soil profile decreased as soil depth increased, and there were significant (P < 0.01) differences among the three soil layers. Land use had a great impact on the SOC content. ANOVA indicated that the spatial variation of SOC contents under different land use types was significant (P < 0.05). The SOC mass of different land-use types followed the order grassland > forestland > cropland. Mean SOC masses of grassland, forestland, and cropland at a depth of 0–40 cm were 5.87, 5.61, and 5.07 kg m–2, respectively. The spatial variation of SOC masses under different land-use types was significant (P < 0.05). ANOVA also showed significant (P < 0.05) impact of aspect on SOC mass in soil at 0–40 cm. Soil bulk density played an important role in the assessment of SOC mass. In conclusion, carbon in soils in the source area of the middle Dan River would increase with conversion from agricultural land to forest or grassland.


2008 ◽  
Vol 9 (6) ◽  
pp. 1482-1490 ◽  
Author(s):  
John Pomeroy ◽  
Chad Ellis ◽  
Aled Rowlands ◽  
Richard Essery ◽  
Janet Hardy ◽  
...  

Abstract The spatial variation of melt energy can influence snow cover depletion rates and in turn be influenced by the spatial variability of shortwave irradiance to snow. The spatial variability of shortwave irradiance during melt under uniform and discontinuous evergreen canopies at a U.S. Rocky Mountains site was measured, analyzed, and then compared to observations from mountain and boreal forests in Canada. All observations used arrays of pyranometers randomly spaced under evergreen canopies of varying structure and latitude. The spatial variability of irradiance for both overcast and clear conditions declined dramatically, as the sample averaging interval increased from minutes to 1 day. At daily averaging intervals, there was little influence of cloudiness on the variability of subcanopy irradiance; instead, it was dominated by stand structure. The spatial variability of irradiance on daily intervals was higher for the discontinuous canopies, but it did not scale reliably with canopy sky view. The spatial variation in irradiance resulted in a coefficient of variation of melt energy of 0.23 for the set of U.S. and Canadian stands. This variability in melt energy smoothed the snow-covered area depletion curve in a distributed melt simulation, thereby lengthening the duration of melt by 20%. This is consistent with observed natural snow cover depletion curves and shows that variations in melt energy and snow accumulation can influence snow-covered area depletion under forest canopies.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 408
Author(s):  
Gizachew Zeleke ◽  
Tatek Dejene ◽  
Wubalem Tadesse ◽  
Pablo Martín-Pinto

In this study, we evaluated stand status, dendrometric variables, and fruit production of Tamarind (Tamarindus indica L.) trees growing in bushland and farmland-use types in dryland areas of Ethiopia. The vegetation survey was conducted using the point-centered quarter method. The fruit yield of 54 trees was also evaluated. Tree density and fruit production in ha were estimated. There was a significant difference in Tamarind tree density between the two land-use types (p = 0.01). The mean fruit yield of farmland trees was significantly higher than that of bushland trees. However, Tamarind has unsustainable structure on farmlands. Differences in the dendrometric characteristics of trees were also observed between the two land-use types. Predictive models were selected for Tamarind fruit yield estimations in both land-use types. Although the majority of farmland trees produced <5000 fruit year−1, the selection of Tamarind germplasm in its natural ranges could improve production. Thus, the development of management plans to establish stands that have a more balanced diameter structure and thereby ensure continuity of the population and fruit yields is required in this area, particularly in the farmlands. This baseline information could assist elsewhere in areas that are facing similar challenges for the species due to land-use change.


2021 ◽  
Author(s):  
Xiangdong Li ◽  
Tong Liu ◽  
Chunlei Zhao ◽  
Ming’an Shao ◽  
Jiong Cheng

Author(s):  
Victoria Iñigo ◽  
Álvaro Marín ◽  
María S. Andrades ◽  
Raimundo Jiménez-Ballesta

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Kristina Osen ◽  
Marie Rolande Soazafy ◽  
Dominic Andreas Martin ◽  
Annemarie Wurz ◽  
Adriane März ◽  
...  

2016 ◽  
Vol 30 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Aura Pedrera-Parrilla ◽  
Eric C. Brevik ◽  
Juan V. Giráldez ◽  
Karl Vanderlinden

Abstract Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the ‘La Manga’ catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.


Sign in / Sign up

Export Citation Format

Share Document