scholarly journals Modeling the Bending Strength of MDF Faced, Polyurethane Foam-Cored Sandwich Panels Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN)

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1514
Author(s):  
Morteza Nazerian ◽  
Fateme Naderi ◽  
Ali Partovinia ◽  
Antonios N. Papadopoulos ◽  
Hamed Younesi-Kordkheili

The present study evaluates and compares predictions on the performance and the approaches of the response surface methodology (RSM) and the artificial neural network (ANN) so to model the bending strength of the polyurethane foam-cored sandwich panel. The effect of the independent variables (formaldehyde to urea molar ratio (MR), sandwich panel thickness (PT) and the oxidized protein to melamine-urea-formaldehyde synthesized resin weight ratio (WR)) was examined based on the bending strength by the central composite design of the RSM and the multilayer perceptron of the ANN. The models were statistically compared based on the training and validation data sets via the determination coefficient (R2), the root mean squares error (RMSE), the absolute average deviation (AAD) and the mean absolute percentage error (MAPE). The R2 calculated for the ANN and the RSM models was 0.9969 and 0.9960, respectively. The models offered good predictions; however, the ANN model was more precise than the RSM model, thus proving that the ANN and the RSM models are valuable instruments to model and optimize the bending properties of the sandwich panel.

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1430
Author(s):  
Zhiheng Zeng ◽  
Ming Chen ◽  
Xiaoming Wang ◽  
Weibin Wu ◽  
Zefeng Zheng ◽  
...  

To reveal quality change rules and establish the predicting model of konjac vacuum drying, a response surface methodology was adopted to optimize and analyze the vacuum drying process, while an artificial neural network (ANN) was applied to model the drying process and compare with the response surface methodology (RSM) model. The different material thickness (MT) of konjac samples (2, 4 and 6mm) were dehydrated at temperatures (DT) of 50, 60 and 70 °C with vacuum degrees (DV) of 0.04, 0.05 and 0.06 MPa, followed by Box–Behnken design. Dehydrated samples were analyzed for drying time (t), konjac glucomannan content (KGM) and whiteness index (WI). The results showed that the DT and MT should be, respectively, under 60 °C and 4 mm for quality and efficiency purposes. Optimal conditions were found to be: DT of 60.34 °C; DV of 0.06 MPa and MT of 2 mm, and the corresponding responses t, KGM and WI were 5 h, 61.96% and 82, respectively. Moreover, a 3-10-3 ANN model was established to compare with three second order polynomial models established by the RSM, the result showed that the RSM models were superior in predicting capacity (R2 > 0.928; MSE < 1.46; MAE < 1.04; RMSE < 1.21) than the ANN model. The main results may provide some theoretical and technical basis for the konjac vacuum drying and the designing of related equipment.


Sign in / Sign up

Export Citation Format

Share Document