scholarly journals Insect Community Response Following Wildfire in an Eastern North American Pine Barrens

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 66
Author(s):  
Heather M. Thompson ◽  
Mark R. Lesser ◽  
Luke Myers ◽  
Timothy B. Mihuc

Ecosystem recovery following wildfire is heavily dependent upon fire severity and frequency, as well as factors such as regional topography and connectivity to unburned patches. Insects are an often-overlooked group of organisms impacted by fire and play crucial roles in many ecosystem services. Flying insects are particularly capable of avoiding fire, returning to burned patches following the initial disturbance, making them an important group to study when assessing wildfire impacts. Following a wildfire in July of 2018 at the Altona Flat Rock jack pine barrens in northeastern New York, insects were collected from an unburned reference site and a post-fire site using malaise traps. Samples were collected in the 2018, 2019, and 2020 field seasons. Insect groups were found to have three main responses to the disturbance event: increased abundance post-fire, unchanged abundance post-fire, or reduced abundance post-fire. Several dipteran families and some non-dipteran groups were present in greater abundance in the post-fire study site, such as Diptera Polleniidae, which increased in abundance immediately following the disturbance in 2018. Other fire-adapted taxa exhibited a more delayed positive response in 2019 and 2020. Diversity, particularly among Diptera, increased with time since the disturbance at the post-fire site. Many taxa declined in response to fire disturbance, including Lepidoptera and several Diptera families, most likely due to habitat, moisture, and organic matter requirements. Future studies could prove beneficial in understanding the recovery of this community and informing land management practices.

2010 ◽  
Vol 28 (3) ◽  
pp. 245-248 ◽  
Author(s):  
J. T. Bried ◽  
N. A. Gifford
Keyword(s):  
New York ◽  

Ecosystems ◽  
2021 ◽  
Author(s):  
Theresa S. Ibáñez ◽  
David A. Wardle ◽  
Michael J. Gundale ◽  
Marie-Charlotte Nilsson

AbstractWildfire disturbance is important for tree regeneration in boreal ecosystems. A considerable amount of literature has been published on how wildfires affect boreal forest regeneration. However, we lack understanding about how soil-mediated effects of fire disturbance on seedlings occur via soil abiotic properties versus soil biota. We collected soil from stands with three different severities of burning (high, low and unburned) and conducted two greenhouse experiments to explore how seedlings of tree species (Betula pendula, Pinus sylvestris and Picea abies) performed in live soils and in sterilized soil inoculated by live soil from each of the three burning severities. Seedlings grown in live soil grew best in unburned soil. When sterilized soils were reinoculated with live soil, seedlings of P. abies and P. sylvestris grew better in soil from low burn severity stands than soil from either high severity or unburned stands, demonstrating that fire disturbance may favor post-fire regeneration of conifers in part due to the presence of soil biota that persists when fire severity is low or recovers quickly post-fire. Betula pendula did not respond to soil biota and was instead driven by changes in abiotic soil properties following fire. Our study provides strong evidence that high fire severity creates soil conditions that are adverse for seedling regeneration, but that low burn severity promotes soil biota that stimulates growth and potential regeneration of conifers. It also shows that species-specific responses to abiotic and biotic soil characteristics are altered by variation in fire severity. This has important implications for tree regeneration because it points to the role of plant–soil–microbial feedbacks in promoting successful establishment, and potentially successional trajectories and species dominance in boreal forests in the future as fire regimes become increasingly severe through climate change.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 150
Author(s):  
Lance Jay Roberts ◽  
Ryan Burnett ◽  
Alissa Fogg

Silvicultural treatments, fire, and insect outbreaks are the primary disturbance events currently affecting forests in the Sierra Nevada Mountains of California, a region where plants and wildlife are highly adapted to a frequent-fire disturbance regime that has been suppressed for decades. Although the effects of both fire and silviculture on wildlife have been studied by many, there are few studies that directly compare their long-term effects on wildlife communities. We conducted avian point counts from 2010 to 2019 at 1987 in situ field survey locations across eight national forests and collected fire and silvicultural treatment data from 1987 to 2016, resulting in a 20-year post-disturbance chronosequence. We evaluated two categories of fire severity in comparison to silvicultural management (largely pre-commercial and commercial thinning treatments) as well as undisturbed locations to model their influences on abundances of 71 breeding bird species. More species (48% of the community) reached peak abundance at moderate-high-severity-fire locations than at low-severity fire (8%), silvicultural management (16%), or undisturbed (13%) locations. Total community abundance was highest in undisturbed dense forests as well as in the first few years after silvicultural management and lowest in the first few years after moderate-high-severity fire, then abundance in all types of disturbed habitats was similar by 10 years after disturbance. Even though the total community abundance was relatively low in moderate-high-severity-fire habitats, species diversity was the highest. Moderate-high-severity fire supported a unique portion of the avian community, while low-severity fire and silvicultural management were relatively similar. We conclude that a significant portion of the bird community in the Sierra Nevada region is dependent on moderate-high-severity fire and thus recommend that a prescribed and managed wildfire program that incorporates a variety of fire effects will best maintain biodiversity in this region.


Plant Disease ◽  
2021 ◽  
Author(s):  
Anna Wallis ◽  
Isabella Magna Yannuzzi ◽  
Mei-Wah Choi ◽  
John Spafford ◽  
Matthew Siemon ◽  
...  

Fire blight, caused by the bacterium Erwinia amylovora, is one of the most important diseases of apple. The antibiotic streptomycin is routinely used in the commercial apple industries of New York and New England to manage the disease. In 2002, and again from 2011 to 2014, outbreaks of streptomycin resistance (SmR) were reported and investigated in NY. Motivated by new grower reports of control failures, we conducted a follow-up investigation of the distribution of SmR and E. amylovora strains for major apple production regions of NY over the last six years (2015-2020). Characterization of clustered regularly interspaced short palindromic repeat (CRISPR) profiles revealed that a few ‘cosmopolitan’ strains were widely prevalent across regions, while many other ‘resident’ strains were confined to one location. In addition, we uncovered novel CRISPR profile diversity in all investigated regions. SmR E. amylovora was detected only in a small area spanning two counties from 2017 to 2020, and always associated with one CRISPR profile (41:23:38), which matched the profile of SmR E. amylovora discovered in 2002. This suggests the original SmR E. amylovora was never fully eradicated and went undetected due to several seasons of low disease pressure in this region. Investigation of several representative isolates under controlled greenhouse conditions indicated significant differences in aggressiveness on ‘Gala’ apples. Potential implications of strain differences include the propensity of strains to become distributed across wide geographic regions and associated resistance management practices. Results from this work will directly influence sustainable fire blight management recommendations for commercial apple industries in NY State and other regions.


1985 ◽  
Vol 63 (7) ◽  
pp. 1519-1530 ◽  
Author(s):  
Barbara L. Peckarsky

Experiments in Colorado and New York streams assessed the effects of predaceous stoneflies on benthic invertebrate community establishment in enclosures providing uncolonized habitat. Aspects of prey community structure measured were density, species richness, relative species abundance, and body size. Unexpected inorganic sediment deposition allowed evaluation of direct effects on Colorado stream benthos and indirect effects on predation. Predaceous perlids and perlodids consistently reduced the density and, therefore, rate of prey community establishment in enclosures. Although New York perlids disproportionately reduced densities of some prey species, Colorado stoneflies caused nonsignificant declines in individual prey species densities, the composite effect of which was a significant whole-community response. Predators did not affect prey species richness nor change the taxonomic composition (species additions or deletions) of communities colonizing enclosures. However, the relative abundance of prey taxa differed significantly between cages with and without predators. Most species showed no size differences between individuals colonizing enclosures with predators and those colonizing control enclosures, with a few interesting exceptions. The deposition of silt eliminated the predator effects on prey density, as well as directly causing significant reductions in many Colorado benthic populations. This result demonstrates that abiotic disturbances can periodically override the effects of predation on stream insect communities colonizing enclosures.


2009 ◽  
Vol 24 (1) ◽  
pp. 73-75 ◽  
Author(s):  
John Maese

AbstractIt is clear from disaster evaluations that communities must be prepared to act independently before government agencies can cope with the early ramifications of disasters. In response to devastation to the borough of Staten Island, New York in the wake of 11 September 2001, the Richmond County Medical Society established a structure to incorporate community needs and institutions to work together for the common good. A program that brings together two hospital systems, nursing homes, emergency medical services, and the Office of Emergency Management physician leadership in a meaningful way now is in place. This approach has improved the disaster preparedness of Staten Island and demonstrated how the Medical Society can provide leadership in disaster preparedness and serve as a conduit for communication amongst entities that normally do not communicate.


2001 ◽  
Vol 43 (5) ◽  
pp. 175-182 ◽  
Author(s):  
D. W. Meals

Achievement of management goals for Lake Champlain (Vermont/New York, USA and Quebec, Canada) will require reduction of agricultural phosphorus loads, the dominant nonpoint source in the Basin. Cost-effective phosphorus reduction strategies need reliable treatment techniques beyond basic cropland and waste management practices. The Lake Champlain Basin Agricultural Watersheds National Monitoring Program (NMP) Project evaluates the effectiveness of livestock exclusion, streambank protection, and riparian restoration practices in reducing concentrations and loads of nutrients, sediment, and bacteria in surface waters. Treatment and control watersheds in northwestern Vermont have been monitored since 1994 according to a paired-watershed design. Monitoring consists of continuous stream discharge recording, flow-proportional sampling for total P, total Kjeldahl N, and total suspended solids, grab sampling for indicator bacterial, and land use/agricultural monitoring. Strong statistical calibration between the control and treatment watersheds has been achieved. Installation of riparian fencing, protected stream crossings, and streambank bioengineering was completed in 1997. Early post-treatment data suggest significant reduction in P concentrations and loads and in bacteria counts in the treated watershed. Monitoring is scheduled to continue through 2000.


Sign in / Sign up

Export Citation Format

Share Document