scholarly journals Living and Dead Aboveground Biomass in Mediterranean Forests: Evidence of Old-Growth Traits in a Quercus pubescens Willd. s.l. Stand

Forests ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 187 ◽  
Author(s):  
◽  
◽  
◽  
◽  
1987 ◽  
Vol 17 (7) ◽  
pp. 697-704 ◽  
Author(s):  
James K. Agee ◽  
Mark H. Huff

Fuel succession was quantified for a 515-year chronosequence in a Tsugaheterophylla/Pseudotsugamenziesii forest. Postfire stand ages selected were 1, 3, 19, 110, 181, and 515. After initial reductions due to mortality from fire in the first 3 years, live aboveground biomass in the tree component increased over time to over 1100 t/ha. Shrub and herb layer biomass was highest in year 19 and year 515. Dead aboveground biomass had different trends for different fuel size classes; normalized fuel loadings of five dead and down fuel categories peaked at four different stand ages: 1-h and 10-h timelag (TL) fuels, age 1; 100-h TL fuels, age 19; 1000-h TL fuels, age 110; >1000-h TL fuels, age 515. Surface fire behavior was highest early in the sere and lowest at ages 110–181. Old-growth forest patches appear to be best buffered against forest fire by mature forest patches rather than old growth or recently burned natural stands.


2008 ◽  
Vol 28 (7) ◽  
pp. 3176-3184 ◽  
Author(s):  
Zhang Guobin ◽  
Liu Shirong ◽  
Zhang Yuandong ◽  
Miao Ning ◽  
Wang Hui

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 774 ◽  
Author(s):  
Wensheng Bu ◽  
Cancan Zhang ◽  
Jihong Huang ◽  
Runguo Zang ◽  
Yi Ding ◽  
...  

Research Highlights: We try to evaluate the relative contribution of environmental factors and functional traits on aboveground biomass in a species rich tropical forest ecosystem after a 40-years natural recovery. Background and Objectives: Functional traits have a potential to incorporate community dynamics into the impacts of disturbance histories or environmental conditions on ecosystem functioning, but few studies have been conducted to understand these processes. Materials and Methods: We measured plant functional traits and soil properties in the tropical montane rainforests on Hainan Island, China, which had experienced different disturbance histories (clear cutting, selective logging, and old-growth) 40 years ago. A structural equation model was used to elucidate how disturbance histories and soil factors influence aboveground biomass (AGB) across different size classes (saplings, treelets, and adult trees) through plant functional traits. Results: The results demonstrated logging stimulated seedling establishment but decreased AGB of adult trees and wood density at community-level (CWM_WD) of sapling and adult tree. Generally, CWM_WD of sapling, treelet, and adult tree decreased linearly with the increasing of specific leaf area at community-level (CWM_SLA) in old-growth forest and these two disturbed forests. Moreover, CWM_SLA explained more variation of CWM_WD with increasing intensity of logging within sapling, treelet, and adult tree. CWM_SLA and CWM_WD not only responded to environmental conditions and disturbance intensity but also affected AGB in all size classes; meanwhile, CWM_SLA was a major driver of AGB. CWM_SLA had a stronger effect on AGB in sapling and treelet classes than on the adult tree class. Conclusions: Our results suggested that disturbance history and environmental factors could directly or indirectly affect ecosystem functioning through plant functional traits. Functional traits always had a stronger effect on AGB than environmental conditions. Moreover, CWM_SLA is a key trait that can be used to link the relationship between environmental conditions and AGB.


2021 ◽  
Author(s):  
Mahoko Noguchi ◽  
Kazuhiko Hoshizaki ◽  
Michinari Matsushita ◽  
Daiki Sugiura ◽  
Tsutomu Yagihashi ◽  
...  

Assessing long-term changes in biomass of old-growth forests is critical in evaluating forest ecosystem functions under a changing climate. Long-term biomass changes are the result of accumulated short-term changes, which can be affected by endogenous processes such as gap filling in small-scale canopy openings. Here, we used 26 years (1993–2019) of repeated tree census data in an old-growth, cool-temperate, deciduous mixed forest that contains three topographic units (riparian, denuded slope, and terrace) in northern Japan to document decadal changes in aboveground biomass (AGB) and their processes in relation to endogenous processes and climatic factors. AGB increased steadily over the 26 years in all topographic units, but different tree species contributed to the increase among the topographic units. AGB gain within each topographic unit exceeded AGB loss via tree mortality in most of the measurement periods despite substantial temporal variation in AGB loss. At the local scale, variations in AGB gain were partially explained by compensating growth of trees around canopy gaps. Climate affected the local-scale AGB gain: the gain was larger in the measurement periods with higher mean temperature during the current summer but smaller in those with higher mean temperature during the previous autumn, synchronously in all topographic units. The decadal climate trends of warming are likely to have contributed to the steady increase in AGB in this old-growth forest.


2022 ◽  
Author(s):  
Aurelio Diaz Herraiz ◽  
Pablo Salazar Zarzosa ◽  
Francisco Javier Mesas ◽  
Salvador Arenas-Castro ◽  
Paloma Ruiz Benito ◽  
...  

Author(s):  
G. Brunialti ◽  
L. Frati ◽  
M. Aleffi ◽  
M. Marignani ◽  
L. Rosati ◽  
...  

2020 ◽  
Vol 63 (2) ◽  
pp. 103-120
Author(s):  
Sergio Fantini ◽  
◽  
Mauro Fois ◽  
Paolo Casula ◽  
Giuseppe Fenu ◽  
...  

Mediterranean forests have been altered by several human activities. Consequently, relatively intact forests that have been unmodified by humans for a relatively long time (i.e., old-growth forests) are often reduced to isolated and fragmented stands. However, despite their high conservation value, little is known about their features and even presence several Mediterranean areas. First steps of their investigation are based on the identification of old-growth features such as amount of large‐size and old trees, tree species composition, canopy heterogeneity, occurrence and amount of deadwood. The Structural Heterogeneity Index (SHI) is commonly used to summarise features of old-growthness in one single value. Here, the SHI was derived for 68 plots included in 45 forest stands within the 4,297 km2 of territory that is covered by forests in Sardinia. SHI values were affected by variables that are likely to be related to forest age and structural complexity, such as presence of cerambycids, canopy cover, forest layers, location and three old-growthness classes. Results confirm a high structural variability among forests with old-growth features, determined by the presence, or lack, of given living and deadwood features. Our findings identified, for the first time, most of the forest stands that need special protection in Sardinia for the presence of old-growth features. In this sense, the SHI was confirmed useful for improving their management and conservation, although more specific and deeper studies are necessary for better understanding their species composition and dynamics.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 289
Author(s):  
Chris Peterson

Modeling of carbon dynamics at the landscape, regional, and continental scales is currently limited by few empirical studies of biomass and carbon accumulation after some types of disturbances. For temperate forests of North America, only three previous studies described biomass and carbon accumulation after wind disturbances, and those were limited by either coarse temporal resolution of the first several decades, or limited time span. Here, 25 years of aboveground biomass and carbon accumulation following severe wind disturbance of an old-growth hemlock-northern hardwoods forest of northwestern Pennsylvania are documented to characterize the temporal trends with fine temporal resolution and extend into the third decade post-disturbance. Mature undisturbed forest at the site supported roughly 296 Mg ha−1 live aboveground biomass and 148 Mg ha−1 of carbon. The disturbance reduced the aboveground woody biomass to ~7 Mg ha−1, and carbon to ~3.5 Mg ha−1. During regrowth, biomass and carbon accumulated slowly at first (e.g., 2–4 Mg ha−1 year−1 for biomass and 1–2 mg ha−1 year−1 for carbon), but at increasing rates up through approximately 17 years post-disturbance, after which accumulation slowed somewhat to roughly 3.4 Mg ha−1 year−1 of biomass and 1.7 Mg ha−1 year−1 of carbon. It appears that the rates reported here are similar to rates observed after wind disturbance of other temperate forests, but slower than accumulation in some tropical systems. Notably, in tropical forests, post-windthrow accumulation is often very rapid in the first decade followed by decreases, while in the results reported here, there was slow accumulation in the first several years that increased in the second decade and then subsequently slowed.


1985 ◽  
Vol 15 (1) ◽  
pp. 78-82 ◽  
Author(s):  
G. D. Mroz ◽  
M. R. Gale ◽  
M. F. Jurgensen ◽  
D. J. Frederick ◽  
A. Clark III

Two climax northern hardwood stands in Upper Michigan growing on sites of differing quality were characterized on the basis of stand composition and aboveground biomass as estimated by regression techniques. Both stands were dominated by sugar maple (Acersaccharum Marsh.). Total aboveground biomass was estimated at 284 and 325 t•ha−1 on the sites. These values are much lower than previous estimates for climax stands in this region because of the lack of shade tolerant conifers on the sites. Site differences are likely due to elevational differences and differences in soil rooting volume.


Sign in / Sign up

Export Citation Format

Share Document