scholarly journals Modeling Lean and Agile Approaches: A Western Canadian Forest Company Case Study

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 529
Author(s):  
Francisco Vergara ◽  
Cristian Palma ◽  
John Nelson

In the forest supply chain of the coast of British Columbia, the material flows are directed toward the push production of commodity products. This industry has not adopted lean and agile principles due to unclear economic impacts on the supply chain in changing market conditions. We tested the ability of lean and agile principles to improve performance in the coastal integrated forest industry. Mixed integer programming formulations were subject to over–under production capacity, and over–under demand fulfillment penalties to emulate agile, lean, and hybrid manufacturing environments, when solving the planning problem. Assuming that the coastal integrated forest industry performs as a hybrid environment, the profit results of each manufacturing environment were judged. The results show that, opportunities for profit improvement were 11% for adopting an agile environment when demand was stable with low variation and large batches of production. However, profit improvement was non-existent when the same demand attributes apply but with high variation. The opportunities for profit improvement were 12% when an agile environment or lean environment was adopted when demand was stable with low variation and small batches of production. However, opportunities for profit improvements of 15% existed for adopting an agile environment when demand was unstable with high variation and small batches of production.

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 964
Author(s):  
Komeyl Baghizadeh ◽  
Dominik Zimon ◽  
Luay Jum’a

In recent decades, the forest industry has been growingly expanded due to economic conditions, climate changes, environmental and energy policies, and intense demand changes. Thus, appropriate planning is required to improve this industry. To achieve economic, social and environmental goals, a supply chain network is designed based on a multi-period and multi-product Mixed-Integer Non-Linear Programming (MINLP) model in which the objective is to maximize the profit, minimize detrimental environmental effects, improve social effects, and minimize the number of lost demands. In addition, to improve forest industry planning, strategic and tactical decisions have been implemented throughout the supply chain for all facilities, suppliers and machinery. These decisions significantly help to improve processes and product flows and to meet customers’ needs. In addition, because of the presence of uncertainty in some parameters, the proposed model was formulated and optimized under uncertainty using the hybrid robust possibilistic programming (HRPP-II) approach. The -constraint technique was used to solve the multi-objective model, and the Lagrangian relaxation (LR) method was utilized to solve the model of more complex dimensions. A case study in Northern Iran was conducted to assess the efficiency of the suggested approach. Finally, a sensitivity analysis was performed to determine the impact of important parameters on objective functions. The results of this study show that increasing the working hours of machines instead of increasing their number, increasing the capacity of some facilities instead of establishing new facilities and expanding the transport fleet has a significant impact on achieving predetermined goals.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Taycir Ben Abid ◽  
Omar Ayadi ◽  
Faouzi Masmoudi

In this study, we propose to solve a biobjective tactical integrated production-distribution planning problem for a multisite, multiperiod, multiproduct, sea-air intermodal supply chain network under uncertainties. Two random parameters are considered simultaneously: product replenishment orders and production capacity, which are modelled via a finite set of scenarios, using a two-stage stochastic approach. A corresponding mathematical model is developed, coded, and solved using the LINGO 18.0 software optimisation tool. This model aims to simultaneously minimise the total costs of production in both regular and overtime, inventory, distribution, and backordering activities and maximise the customer satisfaction level over the tactical planning horizon. The AUGMECON technique is applied to handle with the multiobjective optimisation. The applicability and the performance of the proposed model are tested through a real-life case study inspired from a medium-sized Tunisian textile and apparel company. Sensitivity analysis on stochastic parameters and managerial insights for the studied supply chain network are argued based on the empirical findings.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kyle C. McDermott ◽  
Ryan D. Winz ◽  
Thom J. Hodgson ◽  
Michael G. Kay ◽  
Russell E. King ◽  
...  

PurposeThe study aims to investigate the impact of additive manufacturing (AM) on the performance of a spare parts supply chain with a particular focus on underlying spare part demand patterns.Design/methodology/approachThis work evaluates various AM-enabled supply chain configurations through Monte Carlo simulation. Historical demand simulation and intermittent demand forecasting are used in conjunction with a mixed integer linear program to determine optimal network nodal inventory policies. By varying demand characteristics and AM capacity this work assesses how to best employ AM capability within the network.FindingsThis research assesses the preferred AM-enabled supply chain configuration for varying levels of intermittent demand patterns and AM production capacity. The research shows that variation in demand patterns alone directly affects the preferred network configuration. The relationship between the demand volume and relative AM production capacity affects the regions of superior network configuration performance.Research limitations/implicationsThis research makes several simplifying assumptions regarding AM technical capabilities. AM production time is assumed to be deterministic and does not consider build failure probability, build chamber capacity, part size, part complexity and post-processing requirements.Originality/valueThis research is the first study to link realistic spare part demand characterization to AM supply chain design using quantitative modeling.


2013 ◽  
Vol 4 (3) ◽  
pp. 1-31 ◽  
Author(s):  
Kanchan Das ◽  
Scott A. Dellana

This study proposes a Supplier Quality Affiliation (SQA) approach that is integrated into a mixed integer programming Strategic Supply Chain Management (SSCM) model for overall improvement of the supply chain business process. A pool of acceptable quality and high quality suppliers are affiliated using multi-dimensional quality attributes for the supplier operation parameters in the SQA model. Based on the pre-defined partnering attributes, the SQA model next identifies a select group of high quality suppliers that can be converted into partners. The outcome of the SQA model is then integrated into the SSCM model for ensuring input quality while providing several options for overall business gains of the supply chain members, which include suppliers, manufacturers, and retailers. Applicability of the SQA model is investigated using a real world case study and the SSCM model is illustrated with a numerical example using random data.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-25 ◽  
Author(s):  
Daniel Arturo Olivares Vera ◽  
Elias Olivares-Benitez ◽  
Eleazar Puente Rivera ◽  
Mónica López-Campos ◽  
Pablo A. Miranda

This paper develops a location-allocation model to optimize a four-echelon supply chain network, addressing manufacturing and distribution centers location, supplier selection and flow allocation for raw materials from suppliers to manufacturers, and finished products for end customers, while searching for system profit maximization. A fractional-factorial design of experiments is performed to analyze the effects of capacity, quality, delivery time, and interest rate on profit and system performance. The model is formulated as a mixed-integer linear programming problem and solved by using well-known commercial software. The usage of factorial experiments combined with mathematical optimization is a novel approach to address supply chain network design problems. The application of the proposed model to a case study shows that this combination of techniques yields satisfying results in terms of both its behavior and the obtained managerial insights. An ANOVA analysis is executed to quantify the effects of each factor and their interactions. In the analyzed case study, the transportation cost is the most relevant cost component, and the most relevant opportunity for profit improvement is found in the factor of quality. The proposed combination of methods can be adapted to different problems and industries.


2021 ◽  
Vol 27 (1) ◽  
pp. 45-59
Author(s):  
Hong Zhang ◽  
Lu Yu

Delivery of the prefabricated components may be disrupted by low productivity and various of traffic restrictions, thus delaying the prefabricated construction project. However, planning of the prefabricated component supply chain (PCSC) under disruptions has seldom been studied. This paper studies the construction schedule-dependent resilience for the PCSC plan by considering transportation costs and proposes a multi-objective optimization model. First, the PCSC planning problem regarding schedule-dependent resilience and resultant transportation cost is analyzed. Second, a quantification scheme of the schedule-dependent resilience of the PCSC plan is proposed. Third, formulation of the resilience-cost tradeoff optimization model for the PCSC planning is developed. Fourth, the multi-objective particle swarm optimization (MOPSO)-based method for solving the resilience-cost tradeoff model is presented. Finally, a case study is presented to demonstrate and justify the developed method. This study contributes to the knowledge and methodologies for PCSC management by addressing resilience at the planning stage.


Author(s):  
Sheng Liu ◽  
Zuo-Jun Max Shen ◽  
Xiang Ji

Problem definition: We study an urban bike lane planning problem based on the fine-grained bike trajectory data, which are made available by smart city infrastructure, such as bike-sharing systems. The key decision is where to build bike lanes in the existing road network. Academic/practical relevance: As bike-sharing systems become widespread in the metropolitan areas over the world, bike lanes are being planned and constructed by many municipal governments to promote cycling and protect cyclists. Traditional bike lane planning approaches often rely on surveys and heuristics. We develop a general and novel optimization framework to guide the bike lane planning from bike trajectories. Methodology: We formalize the bike lane planning problem in view of the cyclists’ utility functions and derive an integer optimization model to maximize the utility. To capture cyclists’ route choices, we develop a bilevel program based on the Multinomial Logit model. Results: We derive structural properties about the base model and prove that the Lagrangian dual of the bike lane planning model is polynomial-time solvable. Furthermore, we reformulate the route-choice-based planning model as a mixed-integer linear program using a linear approximation scheme. We develop tractable formulations and efficient algorithms to solve the large-scale optimization problem. Managerial implications: Via a real-world case study with a city government, we demonstrate the efficiency of the proposed algorithms and quantify the trade-off between the coverage of bike trips and continuity of bike lanes. We show how the network topology evolves according to the utility functions and highlight the importance of understanding cyclists’ route choices. The proposed framework drives the data-driven urban-planning scheme in smart city operations management.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6554
Author(s):  
Diana Goettsch ◽  
Krystel K. Castillo-Villar ◽  
Maria Aranguren

Coal is the second-largest source for electricity generation in the United States. However, the burning of coal produces dangerous gas emissions, such as carbon dioxide and Green House Gas (GHG) emissions. One alternative to decrease these emissions is biomass co-firing. To establish biomass as a viable option, the optimization of the biomass supply chain (BSC) is essential. Although most of the research conducted has focused on optimization models, the purpose of this paper is to incorporate machine-learning (ML) algorithms into a stochastic Mixed-Integer Linear Programming (MILP) model to select potential storage depot locations and improve the solution in two ways: by decreasing the total cost of the BSC and the computational burden. We consider the level of moisture and level of ash in the biomass from each parcel location, the average expected biomass yield, and the distance from each parcel to the closest power plant. The training labels (whether a potential depot location is beneficial or not) are obtained through the stochastic MILP model. Multiple ML algorithms are applied to a case study in the northeast area of the United States: Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and Multi-Layer Perceptron (MLP) Neural Network. After applying the hybrid methodology combining ML and optimization, it is found that the MLP outperforms the other algorithms in terms of selecting potential depots that decrease the total cost of the BSC and the computational burden of the stochastic MILP model. The LR and the DT also perform well in terms of decreasing total cost.


Sign in / Sign up

Export Citation Format

Share Document