Exploitation of Yeasts with Probiotic Traits for Kefir Production: Effectiveness of the Microbial Consortium

Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Alice Agarbati ◽  
Maurizio Ciani ◽  
Laura Canonico ◽  
Edoardo Galli ◽  
Francesca Comitini

Kefir is a fermented milk made by beneficial lactic acid bacteria and yeasts inoculated as grains or free cultures. In this work, five yeast strains with probiotic aptitudes belonging to Candida zeylanoides, Yarrowia lipolytica, Kluyveromyces lactis, and Debaryomyces hansenii species were assessed in a defined consortium, in co-culture with a commercial strain of Lactobacillus casei, in order to evaluate the yeasts’ fermentation performance during kefir production, using different milks. The concentration of each yeast was modulated to obtain a stable consortium that was not negatively affected by the bacteria. Furthermore, all yeasts remained viable for five weeks at 4 °C, reaching about 8.00 Log CFU in 150 mL of kefir, a volume corresponding to a pot of a commercial product. The yeasts consortium showed a suitable fermentation performance in all milks, conferring peculiar and distinctive analytical and aromatic properties to the kefirs, confirmed by a pleasant taste. Overall, the panel test revealed that the cow’s and sheep’s kefir were more appreciated than the others; this evaluation was supported by a distinctive fermentation by-products’ content that positively influences the final aroma, conferring to the kefir exalted taste and complexity. These results allow us to propose the yeasts consortium as a versatile and promising multistarter candidate able to affect industrial kefir with both recognizable organoleptic properties and probiotic aptitudes.

2021 ◽  
Vol 37 (1) ◽  
pp. 37-44
Author(s):  
М.А. Velikaya ◽  
S.P. Sineoky

Screening of glycerol-producing yeasts resistant to high osmotic pressure of substrates has been carried out among collection strains and strains isolated from natural sources associated with bee habitat. In total, more than 170 strains of osmotolerant yeasts were investigated which belong to 9 genera and the following13 species: Candida apicola, C. magnolia, Debaryomyces hansenii, D. marama, D. polymorphus, Hansenula ciferri, Kluyveromyces lactis, K. marxianus, Pichia farinose, Saccharomyces cerevisiae, Starmerella bombi, Schizosaccharomyces pombe, and Zhygosaccharomyces rouxii. The Kluyveromyces lactis VKPM Y-4429 strain producing 77.4 g/L of glycerol for 24 h of cultivation on media with a high glucose (300 g/L) and NaCl (5-6%) content was selected. These conditions cause osmotic shock, and as a consequence, a higher glucose conversion to glycerol. glycerol biosynthesis, fermentation, osmotolerant yeast, screening The work was supported by the State Assignment № AAAA-A20-120093090016-9 and the work was carried out using the Unique Scientific Facility of the "All-Russian Collection of Industrial Microorganisms" National Bio-Resource Center, NRC «Kurchatov Institute»---GOSNIIGENETIKA (NBC VKPM).


2021 ◽  
Vol 50 (3) ◽  
pp. 341-348
Author(s):  
A. Caridi

AbstractSeventeen samples of Calabrian ewe’s milk, ewe’s cheese (Pecorino del Poro) made with raw milk, goat’s milk, and goat’s cheese (Caprino d’Aspromonte) made with raw milk were used to obtain 124 yeast isolates. The most abundant species was Debaryomyces hansenii (61.3%), followed by Candida zeylanoides (32.3%) and Kluyveromyces marxianus (3.2%). The enzymatic profile of 25 selected yeast strains was determined. Lastly, they were studied for their interaction with eight dairy lactic acid bacteria – four coccal-shaped and four rod-shaped. The best strains may be used as adjunct cultures for cheese making.


1997 ◽  
Vol 43 (4) ◽  
pp. 362-367 ◽  
Author(s):  
M. J. R. Nout ◽  
C. E. Platis ◽  
D. T. Wicklow

Microflora in wound sites of preharvest maize (including bacteria, yeasts, and filamentous fungi) may play a role in attracting insects to maize plants and may also interact with growth and mycotoxin production by filamentous fungi. As little data are available about the yeasts occurring on maize from the U.S. corn belt, samples of milled maize from experimental plantings at the University of Illinois River Valley Sand Field were analyzed. Yeast counts showed slight yearly fluctuation and varied between 3.60 and 5.88 (log cfu/g maize). The majority of the yeasts were Candida guilliermondii (approximately 55%), Candida zeylanoides (24 %), Candida shehatae (11%), and Debaryomyces hansenii (3%). Also present were Trichosporon cutaneum, Cryptococcus albidus var. aerius, and Pichia membranifaciens. The occurrence of killer yeasts was also evaluated. Killer yeasts were detected in maize for the first time and were identified as Trichosporon cutaneum and Candida zeylanoides. These were able to kill some representative yeasts isolated from maize, including Candida guilliermondii, Candida shehatae, and Cryptococcus albidus var. aerius. Other maize yeasts (Candida zeylanoides, Debaryomyces hansenii, Pichia membranifaciens) were not affected. The majority of yeasts found on maize were unable to ferment its major sugars, i.e., sucrose and maltose. Some (e.g., Candida zeylanoides) were not even able to assimilate these sugars. The importance of these properties in relation to insect attraction to preharvest ears of maize is discussed.Key words: corn, maize, yeast, killer.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shunchang Pu ◽  
Yu Zhang ◽  
Ning Lu ◽  
Cuie Shi ◽  
Shoubao Yan

AbstractIn total, 16 yeast were isolated from Chinese strong flavour Daqu samples and underwent RAPD analysis and identification. Totally, 11 different species were identified among these isolates including Saccharomyces cerevisiae, Hanseniaspora vineae, Pichia kluyveri, Trichosporon asahii, Wickerhamomyces anomalus, Kluyveromyces lactis, Yarrowia lipolytica, Wickerhamomyces mori, Galactomyces geotrichum, Dabaryomyces hansenii, and Saccharomyces kudriavzevii. To understand the impact of these yeast strains on the quality and flavour of Daqu, we then assessed volatile compounds associated with Daqu samples fermented with corresponding strains. These analyses revealed strain YE006 exhibited the most robust ability to produce ethanol via fermentation but yielded relatively low quantities of volatile compounds, whereas strain YE010 exhibited relatively poor fermentation efficiency but produced the greatest quantity of volatile compounds. These two yeast strains were then utilized in a mixed culture to produce fortified Daqu, with the optimal inoculum size being assessed experimentally. These analyses revealed that maximal fermentation, saccharifying, liquefying, and esterifying power as well as high levels of volatile compounds were achieved when using a 2% inoculum composed of YE006/YE010 at a 1:2 (v/v) ratio. When the liquor prepared using this optimized fortified Daqu was compared to unfortified control Daqu, the former was found to exhibit significantly higher levels of flavour compounds and better sensory scores. Overall, our findings may provide a reliable approach to ensuring Daqu quality and improving the consistency and flavour of Chinese strong-flavour liquor through bioaugmentation.


2020 ◽  
Vol 69 (3) ◽  
pp. 251-261
Author(s):  
CARLOS VEGAS ◽  
AMPARO I. ZAVALETA ◽  
PAMELA E. CANALES ◽  
BRAULIO ESTEVE-ZARZOSO

Yeasts, commonly present on the surface of fruits, are of industrial interest for the production of enzymes, flavorings, and bioactive compounds, and have many other scientific uses. The Amazonian rainforest may be a good source of new species or strains of yeasts, but their presence on Amazonian fruits is unknown. The aim of this study was to identify and characterize yeasts isolated from Amazonian native fruits using molecular and phenotypic methods. In total, 81 yeast isolates were obtained from 10 fruits species. Rep-PCR showed 29 strain profiles. Using a combination of restriction-fragment length polymorphism (RFLP) of the 5.8S-ITS region and D1/D2 sequencing of the 26S rRNA gene, 16 species were identified belonging to genera Candida, Debaryomyces, Hanseniaspora, Kodamaea, Martiniozyma, and Meyerozyma. The most dominant species were Candida tropicalis, Debaryomyces hansenii, Hanseniaspora opuntiae, and Hanseniaspora thailandica. H. opuntiae and H. thailandica showed the highest number of the strain profiles. Phenotypic profiles were variable between species, and even among strains. Screening for hydrolases showed lipolytic activity in only one isolate, while proteolytic, cellulolytic and amylolytic capabilities were not detected. Yeast presence among fruits varied, with cidra (Citrus medica) and ungurahui (Oenocarpus bataua) having the highest number of species associated. This investigation broadens the understanding and possible biotechnological uses of yeast strains obtained from Amazonian native fruits.


Author(s):  
E Gustavo Ancasi ◽  
S Maldonado ◽  
R Oliszewski

Los quesos frescos de cabra artesanales de la quebrada de Humahuaca son elaborados con leche cruda, cuya maduración genera sabores, aromas y texturas característicos de la región. Los objetivos de este estudio fueron identificar y caracterizar bacterias lácticas (BAL) y levaduras nativas, aisladas de quesos frescos de esta zona productora. De un total de 36 muestras sembradas en agar Sabouraud, agar MRS y M17, se obtuvieron 128 levaduras y 39 lactobacilos, los que fueron identificados fenotípicamente y evaluadas las siguientes propiedades tecnológicas: pH a la coagulación, tasa de acidificación, proteólisis en agar leche, lipólisis en agar triacetina, producción de acetoína en leche reconstituida y asimilación del citrato en agar citrato. Lb. delbruekii subsp. bulgaricus, Lb. casei subsp. pseudoplantarum, Lb. plantarum var. arabinosus, Lb. plantarum var. plantarum, Lb. casei subsp. rhamnosus, Lb. acidophilus, Lb. helveticus, Lb. fermentum, Lb. brevis var. brevis, Lactococos sp. y Enterococcus sp. fueron las bacterias lácticas identificadas. Del total de los aislamientos, 41,6% coagularon la leche en 10 horas y 33% en 5 horas. Lb. helveticus coaguló la leche a pH de 5,40 en 5 horas, hasta alcanzar un valor final de 4,16 en 24 h, mientras que Lb. delbrueckii subsp. bulgaricus y Lb. fermentum iniciaron la coagulación en 5 horas, con valores de pH iniciales de 4,81 y 4,92 hasta valores finales de 4,19 y 4,21 respectivamente. Lb. helveticus, Lb. delbrueckii subsp. bulgaricus, Lb. plantarum var. arabinosus, Lb. fermentum, Lb. casei subsp. rhamnsosus, Lb. casei subsp. pseudoplantarum, Lb. brevis var. brevis, en orden descendente, demostraron tener capacidad acidificante. Lb. fermentum y Lb. casei subsp. pseudoplantarum desarrollaron actividad proteolítica y sólo Lb. plantarum var. plantarum demostró tener actividad lipolítica. Las levaduras aisladas fueron Debaryomyces hansenii, Zygosaccharomyces rouxii, Kluyveromyces lactis, Wickerbamiela domerquiae, Dekkera bruxellensis, Candida valdiviana, Candida novakii, Dekkera bruxellensis, Candida versatilis, Candida magnoliae, Candida albicans, Pichia anómala, Dekkera anómala y Rodotorula sp. Cepas de D. hansenii, C. magnoliae, Z. rouxii,C. versatilis y K. lactis tuvieron actividad proteolítica y lipólitica, y una cepa de W. domerquiae tuvo solamente actividad proteolítica. Algunas cepas de K. lactis produjeron acetoína y D. bruxellensis y C. versatilis metabolizaron el citrato, hidrolizaron la caseína y tuvieron actividad lipolítica.  Los resultados obtenidos en este estudio muestran que la composición de las poblaciones de BAL y levadura en quesos artesanales es específica de la región. Los conocimientos adquiridos en este estudio podrían ser utilizados para la obtención de cultivos iniciadores con cepas de BAL y levaduras específicas de la región, destinados a la producción de quesos frescos con origen geográfico específico.


Sign in / Sign up

Export Citation Format

Share Document