Use of RAPD and mitochondrial DNA RFLP for typing of Candida zeylanoides and Debaryomyces hansenii yeast strains isolated from cheese

1996 ◽  
Vol 19 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Anabel Romano ◽  
Serge Casaregola ◽  
Paloma Torre ◽  
Claude Gaillardin
Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Alice Agarbati ◽  
Maurizio Ciani ◽  
Laura Canonico ◽  
Edoardo Galli ◽  
Francesca Comitini

Kefir is a fermented milk made by beneficial lactic acid bacteria and yeasts inoculated as grains or free cultures. In this work, five yeast strains with probiotic aptitudes belonging to Candida zeylanoides, Yarrowia lipolytica, Kluyveromyces lactis, and Debaryomyces hansenii species were assessed in a defined consortium, in co-culture with a commercial strain of Lactobacillus casei, in order to evaluate the yeasts’ fermentation performance during kefir production, using different milks. The concentration of each yeast was modulated to obtain a stable consortium that was not negatively affected by the bacteria. Furthermore, all yeasts remained viable for five weeks at 4 °C, reaching about 8.00 Log CFU in 150 mL of kefir, a volume corresponding to a pot of a commercial product. The yeasts consortium showed a suitable fermentation performance in all milks, conferring peculiar and distinctive analytical and aromatic properties to the kefirs, confirmed by a pleasant taste. Overall, the panel test revealed that the cow’s and sheep’s kefir were more appreciated than the others; this evaluation was supported by a distinctive fermentation by-products’ content that positively influences the final aroma, conferring to the kefir exalted taste and complexity. These results allow us to propose the yeasts consortium as a versatile and promising multistarter candidate able to affect industrial kefir with both recognizable organoleptic properties and probiotic aptitudes.


2021 ◽  
Vol 50 (3) ◽  
pp. 341-348
Author(s):  
A. Caridi

AbstractSeventeen samples of Calabrian ewe’s milk, ewe’s cheese (Pecorino del Poro) made with raw milk, goat’s milk, and goat’s cheese (Caprino d’Aspromonte) made with raw milk were used to obtain 124 yeast isolates. The most abundant species was Debaryomyces hansenii (61.3%), followed by Candida zeylanoides (32.3%) and Kluyveromyces marxianus (3.2%). The enzymatic profile of 25 selected yeast strains was determined. Lastly, they were studied for their interaction with eight dairy lactic acid bacteria – four coccal-shaped and four rod-shaped. The best strains may be used as adjunct cultures for cheese making.


2015 ◽  
pp. 209-216 ◽  
Author(s):  
Eduardo P. Borges ◽  
Mário L. Lopes ◽  
Claudemir Bernardino ◽  
Alexandre Godoy ◽  
Fernando E. Ré ◽  
...  

The authors’ work started in fermentation in 1977 and in the 1980’s into sugar production and cane quality. Statistical analysis was a key factor for the success of improving yield in ethanol and sugar production as well as cane quality. Adaption of methods for industrial laboratories also was very important in relation to yield and in reduction of sugar losses in the factory. Methodologies to measure sugar losses occurring through degradation in the factory (evaporation) using ion chromatography and dry substance content with a digital density meter were adapted. The fermentation yield improved from 75% in 1977 to 92% in 2014, which was possible by adapting methods for live bacterial counting within 20 min, and by controlling contamination using antimicrobial products through research in the laboratory and the industry. Since 1990 yeasts for industrial fermentation were selected by karyotyping analysis of the nuclear chromosomes and in the last seven years based on mitochondrial DNA. The last technique made the “Process Driven Selection” possible, i.e. one or several yeast strains which fit each distillery. Floc formation in carbonated beverages is not only due to the Indicator Value (discovery by SPRI research group) but also to aconitic acid and calcium under Brazilian conditions.


1997 ◽  
Vol 43 (4) ◽  
pp. 362-367 ◽  
Author(s):  
M. J. R. Nout ◽  
C. E. Platis ◽  
D. T. Wicklow

Microflora in wound sites of preharvest maize (including bacteria, yeasts, and filamentous fungi) may play a role in attracting insects to maize plants and may also interact with growth and mycotoxin production by filamentous fungi. As little data are available about the yeasts occurring on maize from the U.S. corn belt, samples of milled maize from experimental plantings at the University of Illinois River Valley Sand Field were analyzed. Yeast counts showed slight yearly fluctuation and varied between 3.60 and 5.88 (log cfu/g maize). The majority of the yeasts were Candida guilliermondii (approximately 55%), Candida zeylanoides (24 %), Candida shehatae (11%), and Debaryomyces hansenii (3%). Also present were Trichosporon cutaneum, Cryptococcus albidus var. aerius, and Pichia membranifaciens. The occurrence of killer yeasts was also evaluated. Killer yeasts were detected in maize for the first time and were identified as Trichosporon cutaneum and Candida zeylanoides. These were able to kill some representative yeasts isolated from maize, including Candida guilliermondii, Candida shehatae, and Cryptococcus albidus var. aerius. Other maize yeasts (Candida zeylanoides, Debaryomyces hansenii, Pichia membranifaciens) were not affected. The majority of yeasts found on maize were unable to ferment its major sugars, i.e., sucrose and maltose. Some (e.g., Candida zeylanoides) were not even able to assimilate these sugars. The importance of these properties in relation to insect attraction to preharvest ears of maize is discussed.Key words: corn, maize, yeast, killer.


2020 ◽  
Vol 69 (3) ◽  
pp. 251-261
Author(s):  
CARLOS VEGAS ◽  
AMPARO I. ZAVALETA ◽  
PAMELA E. CANALES ◽  
BRAULIO ESTEVE-ZARZOSO

Yeasts, commonly present on the surface of fruits, are of industrial interest for the production of enzymes, flavorings, and bioactive compounds, and have many other scientific uses. The Amazonian rainforest may be a good source of new species or strains of yeasts, but their presence on Amazonian fruits is unknown. The aim of this study was to identify and characterize yeasts isolated from Amazonian native fruits using molecular and phenotypic methods. In total, 81 yeast isolates were obtained from 10 fruits species. Rep-PCR showed 29 strain profiles. Using a combination of restriction-fragment length polymorphism (RFLP) of the 5.8S-ITS region and D1/D2 sequencing of the 26S rRNA gene, 16 species were identified belonging to genera Candida, Debaryomyces, Hanseniaspora, Kodamaea, Martiniozyma, and Meyerozyma. The most dominant species were Candida tropicalis, Debaryomyces hansenii, Hanseniaspora opuntiae, and Hanseniaspora thailandica. H. opuntiae and H. thailandica showed the highest number of the strain profiles. Phenotypic profiles were variable between species, and even among strains. Screening for hydrolases showed lipolytic activity in only one isolate, while proteolytic, cellulolytic and amylolytic capabilities were not detected. Yeast presence among fruits varied, with cidra (Citrus medica) and ungurahui (Oenocarpus bataua) having the highest number of species associated. This investigation broadens the understanding and possible biotechnological uses of yeast strains obtained from Amazonian native fruits.


2010 ◽  
Vol 9 (3) ◽  
pp. 449-459 ◽  
Author(s):  
Noémie Jacques ◽  
Christine Sacerdot ◽  
Meriem Derkaoui ◽  
Bernard Dujon ◽  
Odile Ozier-Kalogeropoulos ◽  
...  

ABSTRACT Debaryomyces hansenii, a yeast that participates in the elaboration of foodstuff, displays important genetic diversity. Our recent phylogenetic classification of this species led to the subdivision of the species into three distinct clades. D. hansenii harbors the highest number of nuclear mitochondrial DNA (NUMT) insertions known so far for hemiascomycetous yeasts. Here we assessed the intraspecific variability of the NUMTs in this species by testing their presence/absence first in 28 strains, with 21 loci previously detected in the completely sequenced strain CBS 767T, and second in a larger panel of 77 strains, with 8 most informative loci. We were able for the first time to structure populations in D. hansenii, although we observed little NUMT insertion variability within the clades. We determined the chronology of the NUMT insertions, which turned out to correlate with the previously defined taxonomy and provided additional evidence that colonization of nuclear genomes by mitochondrial DNA is a dynamic process in yeast. In combination with flow cytometry experiments, the NUMT analysis revealed the existence of both haploid and diploid strains, the latter being heterozygous and resulting from at least four crosses among strains from the various clades. As in the diploid pathogen Candida albicans, to which D. hansenii is phylogenetically related, we observed a differential loss of heterozygosity in the diploid strains, which can explain some of the large genetic diversity found in D. hansenii over the years.


Author(s):  
Wafa Masoud ◽  
Ali Al-Qaisi ◽  
Nawaf Abu-Khalaf

The main aim of the present study was to predict the growth of the food spoilage yeast Debaryomyces hansenii by multivariate data analysis (MVDA) using temperature, pH and NaCl concentration as growth parameters. Growth of five strains of D. hansenii (DHI, DHII, DHIII, DHIV and DHV) was measured as optical density at 620 nm (OD620) at different values of temperature, pH and NaCl concentrations. It was found that salt was the most important factor, which affects yeast growth followed by temperature. The growth of all yeast strains was reduced by increasing salt concentration and decreasing temperature. On the other hand, pH was found to have a little effect on the growth of D. hansenii. Strain DHII was the most salt-tolerant strains among the five yeast strains investigated. Partial least squares (PLS) prediction model was created out using pH, temperature and NaCl concentration to predict the growth of D. hansenii. The model was acceptable with a correlation of 0.86. The developed PLS model will help in optimizing the food process conditions that will prevent food spoilage by D. hansenii.


2021 ◽  
Vol 37 (1) ◽  
pp. 37-44
Author(s):  
М.А. Velikaya ◽  
S.P. Sineoky

Screening of glycerol-producing yeasts resistant to high osmotic pressure of substrates has been carried out among collection strains and strains isolated from natural sources associated with bee habitat. In total, more than 170 strains of osmotolerant yeasts were investigated which belong to 9 genera and the following13 species: Candida apicola, C. magnolia, Debaryomyces hansenii, D. marama, D. polymorphus, Hansenula ciferri, Kluyveromyces lactis, K. marxianus, Pichia farinose, Saccharomyces cerevisiae, Starmerella bombi, Schizosaccharomyces pombe, and Zhygosaccharomyces rouxii. The Kluyveromyces lactis VKPM Y-4429 strain producing 77.4 g/L of glycerol for 24 h of cultivation on media with a high glucose (300 g/L) and NaCl (5-6%) content was selected. These conditions cause osmotic shock, and as a consequence, a higher glucose conversion to glycerol. glycerol biosynthesis, fermentation, osmotolerant yeast, screening The work was supported by the State Assignment № AAAA-A20-120093090016-9 and the work was carried out using the Unique Scientific Facility of the "All-Russian Collection of Industrial Microorganisms" National Bio-Resource Center, NRC «Kurchatov Institute»---GOSNIIGENETIKA (NBC VKPM).


Sign in / Sign up

Export Citation Format

Share Document