Physiological characterisation of Calabrian dairy yeasts and their possible use as adjunct cultures for cheese making

2021 ◽  
Vol 50 (3) ◽  
pp. 341-348
Author(s):  
A. Caridi

AbstractSeventeen samples of Calabrian ewe’s milk, ewe’s cheese (Pecorino del Poro) made with raw milk, goat’s milk, and goat’s cheese (Caprino d’Aspromonte) made with raw milk were used to obtain 124 yeast isolates. The most abundant species was Debaryomyces hansenii (61.3%), followed by Candida zeylanoides (32.3%) and Kluyveromyces marxianus (3.2%). The enzymatic profile of 25 selected yeast strains was determined. Lastly, they were studied for their interaction with eight dairy lactic acid bacteria – four coccal-shaped and four rod-shaped. The best strains may be used as adjunct cultures for cheese making.

2001 ◽  
Vol 64 (4) ◽  
pp. 559-563 ◽  
Author(s):  
ROXANA MEDINA ◽  
MARTA KATZ ◽  
SILVIA GONZALEZ ◽  
GUILLERMO OLIVER

Indigenous lactic acid bacteria in ewe's milk and artisanal cheese were studied in four samples of fresh raw milk and four 1-month-old cheeses from the provinces of northwest Argentina. Mean growth counts on M17, MRS, and MSE agar media did not show significant differences (P < 0.05) in raw milk and cheeses. Isolates of lactic acid bacteria from milk were identified as Enterococcus (48%), lactococci (14%), leuconostocs (8%), and lactobacilli (30%). All lactococci were identified as Lactococcus lactis (subsp. lactis and subsp. cremoris). Lactobacilli were identified as Lactobacillus plantarum (92%) and Lactobacillus acidophilus (8%). Enterococci (59%) and lactobacilli (41%) were isolated from cheeses. L. plantarum (93%), L. acidophilus (5%), and Lactobacillus casei (2%) were most frequently isolated. L. lactis subsp. lactis biovar diacetylactis strains were considered as fast acid producers. L. lactis subsp. cremoris strains were slow acid producers. L. plantarum and L. casei strains identified from the cheeses showed slow acid production. The majority of the lactobacilli and Lactococcus lactis strains utilized citrate and produced diacetyl and acetoin in milk. Enzyme activities (API-ZYM tests) of lactococci were low, but activities of L. plantarum strains were considerably higher. The predominance of L. plantarum in artisanal cheese is probably important in the ripening of these cheeses due to their physiological and biochemical characteristics.


2021 ◽  
pp. 1-7
Author(s):  
Harutoshi Tsuda ◽  
Kana Kodama

Abstract This paper reveals the technological properties of lactic acid bacteria isolated from raw milk (colostrum and mature milk) of Wagyu cattle raised in Okayama Prefecture, Japan. Isolates were identified based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Streptococcus lutetiensis and Lactobacillus plantarum showed high acid and diacetyl-acetoin production in milk after 24 h of incubation at 40 and 30°C, respectively. These strains are thought to have potential for use as starter cultures and adjunct cultures for fermented dairy products.


1970 ◽  
Vol 37 (1) ◽  
pp. 17-28 ◽  
Author(s):  
T. F. Fryer ◽  
M. Elisabeth Sharpe ◽  
B. Reiter

SummaryA study was made of the utilization of citrate in milk by some lactic acid bacteria. WhenStreptococcus diacetilactis1007 was grown alone or with eitherStreptococcus cremoris924 orLactobacillus caseiB 142/C or with both these latter organisms, > 99% of the milk citrate was utilized within 5 days.L. caseiB 142/C andL. casei/Str. cremorisutilized 57 and 14% of the citrate, respectively. WhenL. caseiC 2 andL. caseiC 5 were grown in milk in whichStr. cremoris924 had been previously grown, 94 and 64%, respectively, of the citrate was utilized after 7 days at 30°C.Cheeses were made using a citrate-fermenting and a non-citrate-fermenting starter and citrate concentrations of the milks, wheys and curds were determined during cheese-making. WithStr. cremoris924, citrate was preferentially retained in the curd at pressing, the concentration in the curd moisture being 2·9 times that in the whey. With the mixed starterStr. cremoris924/Str. diacetilactis1007, the curd at pressing and from the press contained only 27 and 5%, respectively, of the citrate present in theStr. cremoriscurd at these times.Cheeses were made usingStr. cremoris924, combinations ofStr. cremoris/Str. diacetilactis1007, or with δ-gluconic acid lactone instead of starter, with and without the addition ofL. caseiC 5, in order to examine the ability of the latter organism to produce ‘blowing’ in the sense of distension of the Cryovac wrapping of film-wrapped cheeses.L. caseiC 5 neither accelerated the decrease in cheese citrate nor produced blowing of the film-wrapping. Possible reasons for this behaviour are discussed.


2021 ◽  
pp. 108201322110399
Author(s):  
Jana Štefániková ◽  
Július Árvay ◽  
Simona Kunová ◽  
Przemysław Łukasz Kowalczewski ◽  
Miroslava Kačániová

This paper describes the results of the characterization of a traditional Slovak cheese called “May bryndza” with regard to the profiles of volatile organic compounds and lactic acid bacteria. Samples of “May bryndza“ cheese produced solely from unpasteurized ewe's milk were collected from 4 different Slovak farms, and samples of the cheese produced from a mixture of 2 types of milk (raw ewe's and pasteurized cow's milk) were collected from 3 different Slovak industrial dairies. There were 15 compounds detected and identified by the electronic nose. The impact of the kind of milk and the kind of dairy on the aroma profile of the product was not confirmed by PCA. The compounds with the highest relative contents in samples were acetoin (2.59%–24.55%), acetic acid (6.69%–13.39%), methoxy-phenyl-oxime (4.49%–8.52%), butanoic acid (1.89%–5.67%), and 2,3-butanediol (0.98%–4.08%), which were determined with gas chromatography. A total of 1533 isolates of LAB were obtained from the “May bryndza” cheese samples. Four families, five genera, and 19 species were identified with mass spectrometry, and isolated bacteria, both from the farm and industry dairies were the most frequently found to belong to Lactococcus lactis subsp. lactis.


2008 ◽  
Vol 58 (3) ◽  
pp. 461-469 ◽  
Author(s):  
Olfa Ben Moussa ◽  
Melika Mankaï ◽  
Khaola Setti ◽  
Mouna Boulares ◽  
Medini Maher ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
pp. 15-22
Author(s):  
Zergoug Amina ◽  
Cheriguene Abderrahim ◽  
Chougrani Fadela

Urinary tract infections (UTI) are a serious bacterial pathological challenges all over the world, leading to respiratory infections, that’s why new strategies don’t cease to develop. Lactic acid bacteria having shown beneficial effects for years in various areas, may prove to be excellent candidates in medical field. The current research focused on the selection of lactic acid bacteria having the potential of an antibacterial activity against Gram negative bacteria responsible for UTI, for an eventual use as a therapeutic agent. A total of 40 isolates were isolated from goat’s raw milk of Mostaganem (West Algeria). In vitro tests were conducted in order to determine the efficiency of the isolates to produce antibacterial agents in interaction with uropathogens. Among 40 isolates, only 10 isolates identified as Lactobacilli and Lactococci were performant. The Screening showed that the inhibitor agent was proteinaceous substance. Therfore, it is noted that a treatment with presence of LAB is very encouraging as a result of the production of bacteriocin-like substance. On the other hand, LAB can be considered as a good alter-native to the large extent to the antibiotics in the treatment of UTI.


2020 ◽  
Vol 8 (2) ◽  
pp. 301
Author(s):  
Fernando Sánchez-Juanes ◽  
Vanessa Teixeira-Martín ◽  
José Manuel González-Buitrago ◽  
Encarna Velázquez ◽  
José David Flores-Félix

Several artisanal cheeses are elaborated in European countries, being commonly curdled with rennets of animal origin. However, in some Spanish regions some cheeses of type “Torta” are elaborated using Cynara cardunculus L. rennets. Two of these cheeses, “Torta del Casar” and “Torta de Trujillo”, are elaborated in Cáceres province with ewe’s raw milk and matured over at least 60 days without starters. In this work, we identified the lactic acid bacteria present in these cheeses using MALDI-TOF MS and pheS gene analyses, which showed they belong to the species Lactobacillus curvatus, Lactobacillus diolivorans, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis and Leuconostoc mesenteroides. The pheS gene analysis also allowed the identification of the subspecies La. plantarum subsp. plantarum, La. paracasei subsp. paracasei and Le. mesenteroides subsp. jonggajibkimchii. Low similarity values were found in this gene for some currently accepted subspecies of Lc. lactis and for the two subspecies of La. plantarum, and values near to 100% for the subspecies of Le. mesenteroides and La. paracasei. These results, which were confirmed by the calculated ANIb and dDDH values of their whole genomes, showed the need to revise the taxonomic status of these species and their subspecies.


Sign in / Sign up

Export Citation Format

Share Document