scholarly journals NFV-Enabled Efficient Renewable and Non-Renewable Energy Management: Requirements and Algorithms

2020 ◽  
Vol 12 (10) ◽  
pp. 171
Author(s):  
Christian Tipantuña ◽  
Xavier Hesselbach

The increasing worldwide energy demand, the CO2 emissions generated due to the production and use of energy, climate change, and the depletion of natural resources are important concerns that require new solutions for energy generation and management. In order to ensure energy sustainability, measures, including the use of renewable energy sources, the deployment of adaptive energy consumption schemes, and consumer participation, are currently envisioned as feasible alternatives. Accordingly, this paper presents the requirements and algorithmic solutions for efficient management of energy consumption, which aims to optimize the use of available energy, whether or not it is 100% renewable, by minimizing the waste of energy. The proposal works within a Demand-Response environment, uses Network Functions Virtualization as an enabling technology, and leverages the massive connectivity of the Internet of Things provided by modern communications technologies. The energy consumption optimization problem is formulated as an Integer Linear Program. It is optimally solved while using a brute-force search strategy, defined as OptTs, to detect all concerns that are related to the problem. Given the NP-hard nature of the problem and the non-polynomial complexity of OptTs, some heuristic solutions are analyzed. Subsequently, a heuristic strategy, described as FastTs based on a pre-partitioning method, is implemented. The simulation results validate our proposed energy management solution. Exact and heuristic strategies, when deployed in the Network Functions Virtualization domain, demonstrate improvements in the way that energy is consumed, thereby offering an increase in service processing. The evaluation results also show that FastTs produces high-quality solutions that are close to those of OptTs while executing 230×–5000× faster.

Author(s):  
Dmitry Tikhomirov ◽  
Andrey Izmailov ◽  
Yakov Lobachevsky ◽  
Anatoly Tikhomirov

In this article, indicators of energy consumption in agriculture for Russian Federation are discussed, starting from the year 1990, and their forecast values for the period up to 2030 with the analysis of the decay in the period from 1991 to 2010 and gradual growth of energy resources consumption started in 2010 and continued to the present day has been analyzed. The outlines of the strategy of rural energy base development and optimization have been considered. Demand, development, and implementation conditions of decentralized energy supply systems have been substantiated, and their features, composition, and application field have been specified. It has been shown that the major energy resource of standalone energy systems is local and renewable energy sources and of agricultural production wastes. Methods and technologies for the conversion of renewable energy sources (RES), biomass, and waste of agricultural production into heat and power have been characterized.


2012 ◽  
Vol 7 (2) ◽  
pp. 301-313
Author(s):  
Waldemar Kozłowski

Conditions of energy sector development correlated with shrinking resources of the conventional energy sources, increased importance of environmental policy as well as continual price increases cause that the territorial governments should, within the scope of their competences and abilities, rationalise energy consumption and costs. This paper presents the tools for energy sector rationalisation in a commune with consideration of the opportunities for optimisation of energy consumption costs within municipal resources by applying the ESCO model. The paper also draws attention to the possibility of utilising the resources of renewable energy sources by communal governments based on the example of wind energy, of which Warmia and Mazury has some of the largest resources in Poland. 


2020 ◽  
Author(s):  
Ioannis Vatsikouridis ◽  
Konstantinos Karkanis ◽  
Theano Iliopoulou ◽  
Panayiotis Dimitriadis ◽  
Demetris Koutsoyiannis ◽  
...  

<p>The integration of renewable energy sources in modern society has been given priority as these sources are regarded environmentally friendly. However, the variability of natural energy sources, combined with that of energy consumption, demands a different management of the energy system. In this work, we investigate the uncertainty of all variables combined, in order to take this variability into account in energy management.</p><p>Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.</p>


2019 ◽  
Vol 1 (1) ◽  
pp. 33-40
Author(s):  
Ömer Faruk Ulusoy ◽  
Erkan Pektaş

Energy efficiency is a set of measures to prevent the loss of energy in gas, steam, air and electricity, to reduce energy demand by recycling and evaluating various wastes, or to reduce production by advanced technology, more efficient energy resources, advanced industrial processes, and energy recovery.  The International Energy Agency announced that world energy consumption increased by 45% since 1980 and would be 70% higher by 2030 [1]. The energy policy of the future will be on saving, energy efficiency and renewable energy trilogy. Today, with the industrial revolution, the environmental problems and the damages caused by the world we live in today have reached the dimensions that threaten human health and ecological balance. Considering that the energy consumed in the world is in buildings, every measure that reduces energy consumption is very important in terms of improving life conditions. For this purpose, the importance of renewable energy sources in the design of energy architecture principles in energy efficiency and sustainable environments is stated.


Author(s):  
Dmitry Tikhomirov ◽  
Andrey Izmailov ◽  
Yakov Lobachevsky ◽  
Anatoly Tikhomirov

In this article, indicators of energy consumption in agriculture for Russian Federation are discussed, starting from the year 1990, and their forecast values for the period up to 2030 with the analysis of the decay in the period from 1991 to 2010 and gradual growth of energy resources consumption started in 2010 and continued to the present day has been analyzed. The outlines of the strategy of rural energy base development and optimization have been considered. Demand, development, and implementation conditions of decentralized energy supply systems have been substantiated, and their features, composition, and application field have been specified. It has been shown that the major energy resource of standalone energy systems is local and renewable energy sources and of agricultural production wastes. Methods and technologies for the conversion of renewable energy sources (RES), biomass, and waste of agricultural production into heat and power have been characterized.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 698 ◽  
Author(s):  
Andrea Monforti Ferrario ◽  
Francisco Vivas ◽  
Francisca Segura Manzano ◽  
José Andújar ◽  
Enrico Bocci ◽  
...  

The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time, the use of renewable energy sources is pursued to address decarbonization targets, but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing, at the same time, the security and reliability of the microgrids. Locally distributed energy storage systems (ESS) may provide the capacity to temporarily decouple production and demand. In this sense, the most implemented ESS in local energy districts are small–medium-scale electrochemical batteries. However, hydrogen systems are viable for storing larger energy quantities thanks to its intrinsic high mass-energy density. To match generation, demand and storage, energy management systems (EMSs) become crucial. This paper compares two strategies for an energy management system based on hydrogen-priority vs. battery-priority for the operation of a hybrid renewable microgrid. The overall performance of the two mentioned strategies is compared in the long-term operation via a set of evaluation parameters defined by the unmet load, storage efficiency, operating hours and cumulative energy. The results show that the hydrogen-priority strategy allows the microgrid to be led towards island operation because it saves a higher amount of energy, while the battery-priority strategy reduces the energy efficiency in the storage round trip. The main contribution of this work lies in the demonstration that conventional EMS for microgrids’ operation based on battery-priority strategy should turn into hydrogen-priority to keep the reliability and independence of the microgrid in the long-term operation.


2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1988
Author(s):  
Ioannis E. Kosmadakis ◽  
Costas Elmasides

Electricity supply in nonelectrified areas can be covered by distributed renewable energy systems. The main disadvantage of these systems is the intermittent and often unpredictable nature of renewable energy sources. Moreover, the temporal distribution of renewable energy may not match that of energy demand. Systems that combine photovoltaic modules with electrical energy storage (EES) can eliminate the above disadvantages. However, the adoption of such solutions is often financially prohibitive. Therefore, all parameters that lead to a functionally reliable and self-sufficient power generation system should be carefully considered during the design phase of such systems. This study proposes a sizing method for off-grid electrification systems consisting of photovoltaics (PV), batteries, and a diesel generator set. The method is based on the optimal number of PV panels and battery energy capacity whilst minimizing the levelized cost of electricity (LCOE) for a period of 25 years. Validations against a synthesized load profile produced grid-independent systems backed by different accumulator technologies, with LCOEs ranging from 0.34 EUR/kWh to 0.46 EUR/kWh. The applied algorithm emphasizes a parameter of useful energy as a key output parameter for which the solar harvest is maximized in parallel with the minimization of the LCOE.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 332
Author(s):  
Janusz Grabara ◽  
Arsen Tleppayev ◽  
Malika Dabylova ◽  
Leonardus W. W. Mihardjo ◽  
Zdzisława Dacko-Pikiewicz

In this contemporary era, environmental problems spread at different levels in all countries of the world. Economic growth does not just depend on prioritizing the environment or improving the environmental situation. If the foreign direct investment is directed to the polluting industries, they will increase pollution and damage the environment. The purpose of the study is to consider the relationship between foreign direct investment in Kazakhstan and Uzbekistan and economic growth and renewable energy consumption. The study is based on data obtained from 1992 to 2018. The results show that there is a two-way link between foreign direct investment and renewable energy consumption in the considered two countries. The Granger causality test approach is applied to explore the causal relationship between the variables. The Johansen co-integration test approach is also employed to test for a relationship. The empirical results verify the existence of co-integration between the series. The main factors influencing renewable energy are economic growth and electricity consumption. To reduce dependence on fuel-based energy sources, Kazakhstan and Uzbekistan need to attract energy to renewable energy sources and implement energy efficiency based on rapid progress. This is because renewable energy sources play the role of an engine that stimulates the production process in the economy for all countries.


Sign in / Sign up

Export Citation Format

Share Document