scholarly journals A Probabilistic VDTN Routing Scheme Based on Hybrid Swarm-Based Approach

2020 ◽  
Vol 12 (11) ◽  
pp. 192
Author(s):  
Youcef Azzoug ◽  
Abdelmadjid Boukra ◽  
Vasco N. G. J. Soares

The probabilistic Delay Tolerant Network (DTN) routing has been adjusted for vehicular network (VANET) routing through numerous works exploiting the historic routing profile of nodes to forward bundles through better Store-Carry-and-Forward (SCF) relay nodes. In this paper, we propose a new hybrid swarm-inspired probabilistic Vehicular DTN (VDTN) router to optimize the next-SCF vehicle selection using the combination of two bio-metaheuristic techniques called the Firefly Algorithm (FA) and the Glowworm Swarm Optimization (GSO). The FA-based strategy exploits the stochastic intelligence of fireflies in moving toward better individuals, while the GSO-based strategy mimics the movement of glowworm towards better area for displacing and food foraging. Both FA and GSO are executed simultaneously on each node to track better SCF vehicles towards each bundle’s destination. A geography-based recovery method is performed in case no better SCF vehicles are found using the hybrid FA–GSO approach. The proposed FA–GSO VDTN scheme is compared to ProPHET and GeoSpray routers. The simulation results indicated optimized bundles flooding levels and higher profitability of combined delivery delay and delivery probability.

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 839
Author(s):  
Min Wook Kang ◽  
Dong Yeong Seo ◽  
Yun Won Chung

Delay tolerant networks (DTN) is a good candidate for delivering information-centric networking (ICN) messages in fragmented networks due to disaster. In order to efficiently deliver ICN messages in DTN, the characteristics of multiple requester nodes for the same content and multiple provider nodes for the same request should be used efficiently. In this paper, we propose an efficient DTN routing protocol for ICN. In the proposed protocol, requester information for request packet, which is called an Interest in ICN, is shared by exchanging status table with requested Data ID, requester ID, and satisfaction flag, where satisfaction flag is defined to show the delivery status of Data, so that unnecessary forwarding of Data is avoided. Data is forwarded to a more probable node by comparing average delivery predictability to a set of requesters. Performance of the proposed protocol was evaluated using simulation from the aspect of Data delivery probability and Data overhead, for varying buffer sizes, number of relay nodes, and time-to-live (TTL) of Data. The results show that the proposed protocol has better Data delivery probability, compared to content distribution and retrieval framework in disaster networks for public protection (CIDOR) and opportunistic forwarding (OF) protocols, although there is a tradeoff from the aspect of Data overhead for varying buffer sizes and number of relay nodes.


2019 ◽  
Vol 1169 ◽  
pp. 012058 ◽  
Author(s):  
Jie Zhang ◽  
Gang Wang ◽  
Chen Liu ◽  
Fangzheng Zhao ◽  
Xin Zhang

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Mostofa Kamal Nasir ◽  
Rafidah Md. Noor ◽  
Mohsin Iftikhar ◽  
Muhammad Imran ◽  
Ainuddin Wahid Abdul Wahab ◽  
...  

Vehicular ad hoc networks (VANETs) are getting growing interest as they are expected to play crucial role in making safer, smarter, and more efficient transportation networks. Due to unique characteristics such as sparse topology and intermittent connectivity, Delay Tolerant Network (DTN) routing in VANET becomes an inherent choice and is challenging. However, most of the existing DTN protocols do not accurately discover potential neighbors and, hence, appropriate intermediate nodes for packet transmission. Moreover, these protocols cause unnecessary overhead due to excessive beacon messages. To cope with these challenges, this paper presents a novel framework and an Adaptive Geographical DTN Routing (AGDR) for vehicular DTNs. AGDR exploits node position, current direction, speed, and the predicted direction to carefully select an appropriate intermediate node. Direction indicator light is employed to accurately predict the vehicle future direction so that the forwarding node can relay packets to the desired destination. Simulation experiments confirm the performance supremacy of AGDR compared to contemporary schemes in terms of packet delivery ratio, overhead, and end-to-end delay. Simulation results demonstrate that AGDR improves the packet delivery ratio (5–7%), reduces the overhead (1–5%), and decreases the delay (up to 0.02 ms). Therefore, AGDR improves route stability by reducing the frequency of route failures.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2819 ◽  
Author(s):  
Yosra Zguira ◽  
Hervé Rivano ◽  
Aref Meddeb

Intelligent Transport Systems (ITS) are an essential part of the global world. They play a substantial role for facing many issues such as traffic jams, high accident rates, unhealthy lifestyles, air pollution, etc. Public bike sharing system is one part of ITS and can be used to collect data from mobiles devices. In this paper, we propose an efficient, “Internet of Bikes”, IoB-DTN routing protocol based on data aggregation which applies the Delay Tolerant Network (DTN) paradigm to Internet of Things (IoT) applications running data collection on urban bike sharing system based sensor network. We propose and evaluate three variants of IoB-DTN: IoB based on spatial aggregation (IoB-SA), IoB based on temporal aggregation (IoB-TA) and IoB based on spatiotemporal aggregation (IoB-STA). The simulation results show that the three variants offer the best performances regarding several metrics, comparing to IoB-DTN without aggregation and the low-power long-range technology, LoRa type. In an urban application, the choice of the type of which variant of IoB should be used depends on the sensed values.


2013 ◽  
Vol 756-759 ◽  
pp. 851-854
Author(s):  
Yun Yang ◽  
Long Sheng Han ◽  
Ran Yan ◽  
Xiu Ping Kong ◽  
Wen Chun Xu

Delay Tolerant Networks (DTN) has been widely used in challenge networks as an emerging network architecture. Among all studies , routing mechanism is the key problem in DTN. Because of high latency and low data rate, the traditional network routing algorithm can not apply to DTN. This paper proposed a DTN routing mechanism based on area dipartition. The mechanism divided the space into several regions, and calculated the probability of occurrence of each node in each region to determine data transfer path according to the probability. Finally, the simulation results show that the mechanism can significantly enhance the message delivery probability and reduce the packet loss rate.


2014 ◽  
Vol 644-650 ◽  
pp. 1931-1934
Author(s):  
Fan Yang ◽  
Jia Zhe Lai ◽  
Ming Zhe Li

In the research of Delay Tolerant Network (DTN), DTN routing algorithm is a key research issue. The performance of a non-flooding routing algorithm is verified in our paper. The verified algorithm is an Adaptive Priority Routing Algorithm (APRA) which is based on fuzzy strategies. Firstly, we introduce the principle of APRA, then using Opportunistic Network Environment (ONE) -simulation software to compare the performance of Epidemic algorithm, Spray and Wait algorithm, PRoPHET algorithm and APRA. By comparing overhead of netword, rate of messages delivered and average dealy, it finds that the APRA performs better. At last, the weaknesses of this paper and further improvement are also discussed.


2014 ◽  
Vol 1014 ◽  
pp. 351-354
Author(s):  
Mo Liang ◽  
Chen Wang

Underground communication system can be organized as a delay tolerant network (DTN), where delay analysis is of importance. In this paper, we derive the analysis method of block delivery delay in underground DTN using network coding. Unlike existing works that only use the contact-based model, we adopt the random walk on 2-D grid model as our mobility model. We define the innovativeness of a node as the number of new packet it can bring to the destination and derive the network state dynamics based on this definition. The simulations show that our analytic approach has better prediction to the delay performance.


Sign in / Sign up

Export Citation Format

Share Document