spatiotemporal aggregation
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yujiang Lu ◽  
Yaju Liu ◽  
Jianwei Fei ◽  
Zhihua Xia

Recent progress in deep learning, in particular the generative models, makes it easier to synthesize sophisticated forged faces in videos, leading to severe threats on social media about personal privacy and reputation. It is therefore highly necessary to develop forensics approaches to distinguish those forged videos from the authentic. Existing works are absorbed in exploring frame-level cues but insufficient in leveraging affluent temporal information. Although some approaches identify forgeries from the perspective of motion inconsistency, there is so far not a promising spatiotemporal feature fusion strategy. Towards this end, we propose the Channel-Wise Spatiotemporal Aggregation (CWSA) module to fuse deep features of continuous video frames without any recurrent units. Our approach starts by cropping the face region with some background remained, which transforms the learning objective from manipulations to the difference between pristine and manipulated pixels. A deep convolutional neural network (CNN) with skip connections that are conducive to the preservation of detection-helpful low-level features is then utilized to extract frame-level features. The CWSA module finally makes the real or fake decision by aggregating deep features of the frame sequence. Evaluation against a list of large facial video manipulation benchmarks has illustrated its effectiveness. On all three datasets, FaceForensics++, Celeb-DF, and DeepFake Detection Challenge Preview, the proposed approach outperforms the state-of-the-art methods with significant advantages.



Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 454
Author(s):  
He Yan ◽  
Liyuan Chen ◽  
Quansheng Ge ◽  
Chengming Tian ◽  
Jixia Huang

Research Highlights: This study looks at poplar canker caused by Cytospora chrysosperma as a geographical phenomenon, and it applies spatial statistics to reveal the pattern and aggregation effects of the disease on a large scale in time and space. The incidence area of poplar canker in Northeast China has spatial (spatiotemporal) aggregation effects, which emphasize the importance of coordinated prevention. The results of spatial and spatiotemporal clusters can guide specific regional prevention and indicate the possible predisposing factors, respectively. Background and Objectives: Poplar canker, a harmful forest biological disease that is widespread throughout Northeast China, brings enormous ecological and economic losses. The limited cognition of its spatiotemporal pattern and aggregation effects restricts the decision-making for regional prevention and the identification of disease-inducing conditions. This study aims to explore the spatiotemporal pattern and to detect the aggregation effects of the disease, trying to provide references for prevention. Materials and Methods: According to the incidence data of poplar canker reported by each county in Northeast China from 2002 to 2015, we mapped the distribution of the incidence rate in ArcGIS and performed retrospective scan statistics in SaTScan to detect the spatial and spatiotemporal aggregation effects of the incidence area. Results: The spatiotemporal pattern of poplar canker’s incidence rate presents the characteristic of “outbreak-aggregation-spread-stability.” The incidence area of the disease when we performed spatial aggregation scan statistics showed the primary cluster covering Liaoning province (LLR = 86469.86, p < 0.001). The annual spatial scan statistics detected a total of 14 primary clusters and 37 secondary clusters, indicating three phases of aggregation. The incidence area of disease also shows spatiotemporal aggregation effects with the primary cluster located around Liaoning province, appearing from 2009 to 2015 (LLR = 64182.00, p < 0.001). Conclusions: The incidence area of poplar canker presents significant characteristics of spatial and spatiotemporal aggregation, and we suggest attaching importance to the clues provided by the aggregation effects in disease prevention and identification of predisposing factors.



2019 ◽  
Vol 11 (22) ◽  
pp. 6276 ◽  
Author(s):  
Deyi Feng ◽  
Lingli Tu ◽  
Zhongwei Sun

Baidu heat maps can be used to explore the pattern of individual citizens conducting their activities and their agglomeration effects at the city scale. To investigate the spatiotemporal pattern of population aggregation and its relationship with land parcel attributes in small cities, we collected Baidu heat map data for a weekday and a weekend day in Shehong County and used Getis–Ord general G and the raster overlay methods to analyze population aggregation spatiotemporal characteristics. Chi-squared and Pearson correlation tests were used to analyze the correlation between population aggregation and land parcel attributes against three types of land parcel divisions: land use parcels, road network blocks, and grids. The results showed that, (1) for most hours of the workday, the degree of population aggregation was greater than on the weekend, and the fluctuation magnitude on the workday was higher as well. (2) On the weekday, people clustered and dispersed faster than on the weekend. (3) On the weekday and weekend, the spatial position of people aggregation was highly overlapping. (4) The correlation between the degree of population aggregation and the type of parcel was not significant. (5) Regarding different parcel unit sizes, the correlations between population aggregation degree and point of interest (POI) density, floor area ratio, and building density were significant and positively correlated, and the correlation coefficients increased as the grid size increased.



Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2819 ◽  
Author(s):  
Yosra Zguira ◽  
Hervé Rivano ◽  
Aref Meddeb

Intelligent Transport Systems (ITS) are an essential part of the global world. They play a substantial role for facing many issues such as traffic jams, high accident rates, unhealthy lifestyles, air pollution, etc. Public bike sharing system is one part of ITS and can be used to collect data from mobiles devices. In this paper, we propose an efficient, “Internet of Bikes”, IoB-DTN routing protocol based on data aggregation which applies the Delay Tolerant Network (DTN) paradigm to Internet of Things (IoT) applications running data collection on urban bike sharing system based sensor network. We propose and evaluate three variants of IoB-DTN: IoB based on spatial aggregation (IoB-SA), IoB based on temporal aggregation (IoB-TA) and IoB based on spatiotemporal aggregation (IoB-STA). The simulation results show that the three variants offer the best performances regarding several metrics, comparing to IoB-DTN without aggregation and the low-power long-range technology, LoRa type. In an urban application, the choice of the type of which variant of IoB should be used depends on the sensed values.



2017 ◽  
Vol 63 ◽  
pp. 26-37 ◽  
Author(s):  
Tracy A. Kugler ◽  
Steven M. Manson ◽  
Joshua R. Donato




Author(s):  
S. Liao ◽  
L. Chen ◽  
J. Li ◽  
W. Xiong ◽  
Q. Wu

Existing spatiotemporal database supports spatiotemporal aggregation query over massive moving objects datasets. Due to the large amounts of data and single-thread processing method, the query speed cannot meet the application requirements. On the other hand, the query efficiency is more sensitive to spatial variation then temporal variation. In this paper, we proposed a spatiotemporal aggregation query method using multi-thread parallel technique based on regional divison and implemented it on the server. Concretely, we divided the spatiotemporal domain into several spatiotemporal cubes, computed spatiotemporal aggregation on all cubes using the technique of multi-thread parallel processing, and then integrated the query results. By testing and analyzing on the real datasets, this method has improved the query speed significantly.



2011 ◽  
Vol 20 (5) ◽  
pp. 721-741 ◽  
Author(s):  
Igor Timko ◽  
Michael Böhlen ◽  
Johann Gamper


Sign in / Sign up

Export Citation Format

Share Document