scholarly journals Surface Fire to Crown Fire: Fire History in the Taos Valley Watersheds, New Mexico, USA

Fire ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
Lane Johnson ◽  
Ellis Margolis

Tree-ring fire scars, tree ages, historical photographs, and historical surveys indicate that, for centuries, fire played different ecological roles across gradients of elevation, forest, and fire regimes in the Taos Valley Watersheds. Historical fire regimes collapsed across the three watersheds by 1899, leaving all sites without fire for at least 119 years. Historical photographs and quaking aspen (Populus tremuloides Michx.) ages indicate that a high-severity fire historically burned at multiple high-elevation subalpine plots in today’s Village of Taos Ski Valley, with large high-severity patches (>640 ha). Low-severity, frequent (9–29-year median interval) surface fires burned on the south aspects in nearby lower elevation dry conifer forests in all watersheds. Fires were associated with drought during the fire year. Widespread fires commonly burned synchronously in multiple watersheds during more severe drought years, preceded by wet years, including fire in all three watersheds in 1664, 1715, and 1842. In contrast, recent local “large” wildfires have only burned within single watersheds and may not be considered large in a historical context. Management to promote repeated low-severity fires and the associated open stand structures is within the historical range of variability in the dry conifer forests of these watersheds. In the high-elevation, subalpine forests, different management approaches are needed, which balance ecological and socioeconomic values while providing public safety.


2007 ◽  
Vol 37 (11) ◽  
pp. 2227-2241 ◽  
Author(s):  
Ellis Q. Margolis ◽  
Thomas W. Swetnam ◽  
Craig D. Allen

Dendroecological techniques were applied to reconstruct stand-replacing fire history in upper montane forests in northern New Mexico and southern Colorado. Fourteen stand-replacing fires were dated to 8 unique fire years (1842–1901) using four lines of evidence at each of 12 sites within the upper Rio Grande Basin. The four lines of evidence were (i) quaking aspen ( Populus tremuloides Michx.) inner-ring dates, (ii) fire-killed conifer bark-ring dates, (iii) tree-ring width changes or other morphological indicators of injury, and (iv) fire scars. The annual precision of dating allowed the identification of synchronous stand-replacing fire years among the sites, and co-occurrence with regional surface fire events previously reconstructed from a network of fire scar collections in lower elevation pine forests across the southwestern United States. Nearly all of the synchronous stand-replacing and surface fire years coincided with severe droughts, because climate variability created regional conditions where stand-replacing fires and surface fires burned across ecosystems. Reconstructed stand-replacing fires that predate substantial Anglo-American settlement in this region provide direct evidence that stand-replacing fires were a feature of high-elevation forests before extensive and intensive land-use practices (e.g., logging, railroad, and mining) began in the late 19th century.



2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.



2015 ◽  
Vol 341 ◽  
pp. 45-58 ◽  
Author(s):  
Hélène M. Marcoux ◽  
Lori D. Daniels ◽  
Sarah E. Gergel ◽  
Eric Da Silva ◽  
Ze’ev Gedalof ◽  
...  


2014 ◽  
Vol 23 (7) ◽  
pp. 959 ◽  
Author(s):  
Larissa L. Yocom ◽  
Peter Z. Fulé ◽  
Donald A. Falk ◽  
Celia García-Domínguez ◽  
Eladio Cornejo-Oviedo ◽  
...  

We investigated the influence of broad- v. fine-scale factors on fire in an unusual landscape suitable for distinguishing the drivers of fire synchrony. Our study was conducted in the Sierra Madre Oriental mountain range, in north-eastern Mexico. We worked in nine sites on three parallel mountains that receive nearly identical broad-scale climatic influence, but between which fires are unlikely to spread. We collected and cross dated samples from 357 fire-scarred trees in nine sites in high-elevation mixed-conifer forests and identified fire dates. We used Jaccard similarity analysis to evaluate synchrony among sites and quantified relationships between climate and fire occurrence. Fires were historically frequent (mean fire interval ranged from 8 to 16 years in all sites) and dates of fire exclusion ranged from 1887 to 1962. We found low fire synchrony among the three mountains, indicating a strong influence of fine-scale factors on fire occurrence. Fire regime attributes were similar across mountains despite the independence of fire dates. La Niña events were associated with fire over time, although not significantly since the 1830s. Our results highlight the importance of scale in describing fire regimes and suggest that we can use fire history to understand controls on complex ecosystem processes and patterns.



2020 ◽  
Author(s):  
Cerena J. Brewen ◽  
John-Pascal Berrill ◽  
Martin W. Ritchie ◽  
Kevin Boston ◽  
Christa M. Dagley ◽  
...  

AbstractQuaking aspen (Populus tremuloides) is a valued, minor component on western landscapes. It provides a wide range of ecosystem services and has been in decline throughout the arid west for the last century. This decline may be explained partially by the lack of fire on the landscape as aspen benefit from fire that eliminates conifer competition and stimulates reproduction through root suckering. Managers are interested in aspen restoration but there is a lack of knowledge about their spatial dynamics in response to fire. Our study area in northeastern California on the Lassen, Modoc and Plumas National Forests has experienced recent large mixed-severity wildfires where aspen was present, providing an opportunity to study the re-introduction of fire. We observed two time periods; a 54-year absence of fire from 1941 to 1993 preceding a 24-year period of wildfire activity from 1993 to 2017. We utilized aerial photos to delineate aspen stand size, location and succession to conifers. We chose aspen stands in areas where wildfires overlapped (twice-burned), where only a single wildfire burned, and areas that did not burn within the recent 24-year period. We looked at these same stands within the first period of fire exclusion for comparison (i.e., 1941-1993). In the absence of fire, all aspen stand areas declined and all stands experienced increases in conifer composition. After wildfire, stands that burned experienced a release from conifer competition and increased in stand area. Stands that burned twice or at high severity experienced a larger removal of conifer competition than stands that burned once at low severity, promoting aspen recovery and expansion. Stands with less edge:area ratio also expanded more with fire present. Across both time periods, stand movement, where aspen stand footprints were mostly in new areas compared to footprints of previous years, was highest in smaller stands. In the fire exclusion period, smaller stands exhibited greater changes in area and location (movement), highlighting their vulnerability to loss in the absence of disturbances that provide adequate growing space for aspen over time.



2012 ◽  
Vol 42 (12) ◽  
pp. 2011-2021 ◽  
Author(s):  
James N. Long ◽  
Karen Mock

A conventional view of regeneration ecology of quaking aspen ( Populus tremuloides Michx.) in western North American holds that reproduction is strictly vegetative and, except on some marginal sites, only successful following high-severity disturbance. This view has strongly influenced silvicultural treatment of western aspen and has led to low expectations concerning genetic diversity of stands and landscapes. However, recent discoveries are fundamentally altering our understanding of western aspen regeneration ecology and genetics. For example, there are clearly multiple pathways of aspen regeneration and stand development. Research on a variety of fronts indicates that seedling establishment is common enough to be ecologically important and that genetic diversity is substantially greater than previously thought. We review conventional understanding of western aspen and put this into the context of silvicultural practice. We then review recent developments in aspen research and assess the silvicultural implications of these insights.



1994 ◽  
Vol 4 (2) ◽  
pp. 65 ◽  
Author(s):  
SW Barrett

A fire history investigation was conducted for three forest community types in the Absaroka Mountains of Yellowstone National Park, Wyoming. Master fire chronologies were based on fire-initiated age classes and tree fire scars. The area's major forest type, lodgepole pine (Pinus contorta Dougl. var. latifolia) ecosystems, revealed a predominant pattern of stand replacing fires with a 200 year mean interval-nearly half the length estimated in previous studies of lodgepole pine on less productive subalpine plateaus in YNP. High elevation whitebark pine (P. albicaulis Engelm.) forests had primarily stand replacing fires with >350 year mean intervals, but some stands near timberline also occasionally experienced mixed severity- or non-lethal underburns. Before nearly a century of effective fire suppression in Yellowstone's northern range, lower elevation Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco.) communities adjacent to Artemesia tridentata (Nutt.) grasslands experienced primarily non-lethal underburns at 30 year mean intervals. While short interval fire regimes have been altered by longterm fire suppression, fire exclusion apparently had only limited influence on the area's infrequently burned ecosystems prior to widespread stand replacement burning in 1988.



2006 ◽  
Vol 15 (3) ◽  
pp. 433 ◽  
Author(s):  
William L. Baker

Reconstructing fire regimes of the past can provide a valuable frame of reference for understanding the impact of human land uses on contemporary fire and forest structure, but methods for reconstructing past fire regimes are under re-evaluation. In the present article, a common method of characterizing surface fire regimes, using composite fire intervals from fire scars, is shown to significantly underestimate the length of the fire rotation and population mean fire interval in Grand Canyon landscapes where these parameters are known. Also, the evidence and interpretation that past high-severity fire was uncommon in ponderosa pine landscapes in Grand Canyon National Park are challenged. Together, these two concerns mean that an alternative characterization of the fire regime, which has very different implications, cannot be excluded. Management aimed at lowering fire risk, as a means of restoration, does not presently have a sound scientific basis, if it uses the composite fire interval as a measure of the fire regime or is based on fire history research that lacks adequate analysis of past high-severity fire.



PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0232995
Author(s):  
Cerena J. Brewen ◽  
John-Pascal Berrill ◽  
Martin W. Ritchie ◽  
Kevin Boston ◽  
Christa M. Dagley ◽  
...  

Quaking aspen (Populus tremuloides) is a valued, minor component on northeastern California landscapes. It provides a wide range of ecosystem services and has been in decline throughout the region for the last century. This decline may be explained partially by the lack of fire on the landscape due to heavier fire suppression, as aspen benefit from fire that eliminates conifer competition and stimulates reproduction through root suckering. However, there is little known about how aspen stand area changes in response to overlapping fire. Our study area in northeastern California on the Lassen, Modoc and Plumas National Forests has experienced recent large mixed-severity wildfires where aspen was present, providing an opportunity to study the re-introduction of fire. We observed two time periods; a 52-year absence of fire from 1941 to 1993 preceding a 24-year period of wildfire activity from 1993 to 2017. We utilized aerial photos and satellite imagery to delineate aspen stands and assess conifer cover percent. We chose aspen stands in areas where wildfires overlapped (twice-burned), where only a single wildfire burned, and areas that did not burn within the recent 24-year period. We observed these same stands within the first period of fire exclusion for comparison (i.e., 1941–1993). In the absence of fire, all aspen stand areas declined and all stands experienced increases in conifer composition. After wildfire, stands that burned experienced a release from conifer competition and increased in stand area. Stands that burned twice or at high severity experienced a larger removal of conifer competition than stands that burned once at low severity, promoting expansion of aspen stand area. Stands with less edge:area ratio also expanded in area more with fire present. Across both time periods, stand movement, where aspen stand footprints were mostly in new areas compared to footprints of previous years, was highest in smaller stands. In the fire exclusion period, smaller stands exhibited greater loss of area and changes in location (movement) than in the return of fire period, highlighting their vulnerability to loss via succession to conifers in the absence of disturbances that provide adequate growing space for aspen over time.



2019 ◽  
Vol 49 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Emily K. Heyerdahl ◽  
Rachel A. Loehman ◽  
Donald A. Falk

Dry mixed-conifer forests are widespread in the interior Pacific Northwest, but their historical fire regimes are poorly characterized, in particular the relative mix of low- and high-severity fire. We reconstructed a multi-century history of fire from tree rings in dry mixed-conifer forests in central Oregon. These forests are dominated by ponderosa pine (Pinus ponderosa Lawson & C. Lawson), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and grand fir (Abies grandis (Douglas ex D. Don) Lindl.). Across four, 30-plot grids of ∼800 ha covering a mosaic of dry mixed-conifer forest types, we sampled 4065 trees for evidence of both high- and low-severity fire. From 1650 to ∼1900, all four sites sustained frequent, often extensive, low-severity fires that sometimes included small patches of severe fire (50–150 ha during 18%–28% of fire years). Fire intervals were similar among sites and also among forest types within sites (mean intervals of 14–32 years). To characterize the continuous nature of the variation in fire severity, we computed a plot-based index that captures the relative occurrence of low- and high-severity fire. Our work contributes to the growing understanding of variation in past fire regimes in the complex and dynamic forests of North America’s Interior West.



Sign in / Sign up

Export Citation Format

Share Document