scholarly journals Effect of β-Glucans in Diets on Growth, Survival, Digestive Enzyme Activity, and Immune System and Intestinal Barrier Gene Expression for Tropical Gar (Atractosteus tropicus) Juveniles

Fishes ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 27 ◽  
Author(s):  
Karen Nieves-Rodríguez ◽  
Carlos Álvarez-González ◽  
Emyr Peña-Marín ◽  
Fernando Vega-Villasante ◽  
Rafael Martínez-García ◽  
...  
2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yuanyuan Wang ◽  
Chianning Heng ◽  
Xihong Zhou ◽  
Guangtian Cao ◽  
Lei Jiang ◽  
...  

Abstract The present study investigated the effect of Bacillus subtilis DSM 29784 (Ba) and enzymes (xylanase and β-glucanases; Enz), alone or in combination (BE) as antibiotic replacements, on the growth performance, digestive enzyme activity, immune response and the intestinal barrier of broiler chickens. In total, 1200 1-d-old broilers were randomly assigned to five dietary treatments, each with six replicate pens of forty birds for 63 d as follows: (a) basal diet (control), supplemented with (b) 1 × 109 colony-forming units (cfu)/kg Ba, (c) 300 mg/kg Enz, (d) 1 × 109 cfu/kg Ba and 300 mg/kg Enz and (e) 250 mg/kg enramycin (ER). Ba, Enz and BE, similar to ER, decreased the feed conversion rate, maintained intestinal integrity with a higher villus height:crypt depth ratio and increased the numbers of goblet cells. The BE group exhibited higher expression of claudin-1 and mucin 2 than the other four groups. BE supplementation significantly increased the α-diversity and β-diversity of the intestinal microbiota and markedly enhanced lipase activity in the duodenal mucosa. Serum endotoxin was significantly decreased in the BE group. Compared with those in the control group, increased superoxide dismutase and glutathione peroxidase activities were observed in the jejunal mucosa of the Ba and BE groups, respectively. In conclusion, the results suggested that dietary treatment with Ba, Enz or BE has beneficial effects on growth performance and anti-oxidative capacity, and BE had better effects than Ba or Enz alone on digestive enzyme activity and the intestinal microbiota. Ba or Enz could be used as an alternative to antibiotics for broiler chickens.


2019 ◽  
Vol 10 (1) ◽  
pp. 333-343 ◽  
Author(s):  
Jing Li ◽  
Tao Wu ◽  
Na Li ◽  
Xuening Wang ◽  
Guiyun Chen ◽  
...  

Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity through regulating the gut microbiota in aging rats.


2021 ◽  
Author(s):  
Shulin Tang ◽  
Xu-Fang Liang ◽  
Shan He ◽  
Yanpeng Zhang ◽  
Di Peng ◽  
...  

Abstract Chinese perch (Siniperca chuatsi) is one of the economically important freshwater species fish for aquaculture in China. This study aimed to determine the ontogenetic development of the digestive enzyme activity (trypsin, pepsin, amylase, lipase, chymotrypsin and alkaline phosphatase) and related gene expressions of S. chuatsi larvae from hatching to 30 days post-hatching (dph). The larvae were fed with live fry fish twice a day. Results indicated that it was low detection of enzyme activity and gene expression of trypsin, chymotrypsin, lipase, amylase and alkaline phosphatase before mouth opened, the last two enzymes showed an activity close to zero. Different from other carnivorous fish, specific activity and gene expression of trypsin, chymotrypsin and lipase in S. chuatsi larvae were not increased after starting the first feeding. Interestingly, the amylase and alkaline phosphatase specific activity progressively increased over development, indicating that the larvae have certain ability to digest carbohydrates. Pepsin activity and gene expression started to sharply increase after 15 dph, other digestive enzyme activity showed downward trends. The development pattern of digestive enzymes may affect the ability of S. chuatsi to digest the zooplankton, which leads to the formation of unique feeding habit of the S. chuatsi larvae. This study also will provide the necessary theoretical basis for the artificial opening diet of the S. chuatsi larvae.


Sign in / Sign up

Export Citation Format

Share Document