scholarly journals In Vitro Effects of Bisphenol A and Tetrabromobisphenol A on Cell Viability and Reproduction-Related Gene Expression in Pituitaries from Sexually Maturing Atlantic Cod (Gadus morhua L.)

Fishes ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 48 ◽  
Author(s):  
Kristine von Krogh ◽  
Erik Ropstad ◽  
Rasoul Nourizadeh-Lillabadi ◽  
Trude Marie Haug ◽  
Finn-Arne Weltzien

Bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) are widely used industrial chemicals, ubiquitously present in the environment. While BPA is a well-known endocrine disruptor and able to affect all levels of the teleost reproductive axis, information regarding TBBPA on this subject is very limited. Using primary cultures from Atlantic cod (Gadus morhua), the present study was aimed at investigating potential direct effects of acute (72 h) BPA and TBBPA exposure on cell viability and the expression of reproductive-relevant genes in the pituitary. The results revealed that both bisphenols stimulate cell viability in terms of metabolic activity and membrane integrity at environmentally relevant concentrations. BPA had no direct effects on gonadotropin gene expression, but enhanced the expression of gonadotropin-releasing hormone (GnRH) receptor 2a, the main gonadotropin modulator in Atlantic cod. In contrast, TBBPA increased gonadotropin transcript levels but had no effect on GnRH receptor mRNA. In conclusion, both anthropogenic compounds display endocrine disruptive properties and are able to directly interfere with gene expression related to reproductive function in cod pituitary cells at environmentally relevant concentrations in vitro.

Reproduction ◽  
2017 ◽  
Vol 154 (5) ◽  
pp. 581-594 ◽  
Author(s):  
Kristine von Krogh ◽  
Gunnveig Toft Bjørndal ◽  
Rasoul Nourizadeh-Lillabadi ◽  
Kjetil Hodne ◽  
Erik Ropstad ◽  
...  

Depending on the stage of gonad maturation, as well as other factors, gonadal steroids can exert either a positive or negative feedback at the brain and pituitary level. While this has been demonstrated in many teleost species, little is known about the nature of steroid feedback in Gadiform fish. Using an optimized in vitro model system of the Atlantic cod pituitary, the present study investigated the potential effects of two physiologically relevant doses of estradiol, testosterone (TS) or dihydrotestosterone (DHTS) on cell viability and gene expression of gonadotropin subunits (fshb/lhb) and two suggested reproduction-relevant gonadotropin-releasing hormone receptors (gnrhr1b/gnrhr2a) during three stages of sexual maturity. In general, all steroids stimulated cell viability in terms of metabolic activity and membrane integrity. Furthermore, all steroids affected fshb expression, with the effect depending on both the specific steroid, dose and maturity status. Conversely, only DHTS exposure affected lhb levels, and this occurred only during the spawning season. Using single-cell qPCR, co-transcription of gnrhr1b and gnrhr2a was confirmed to both fshb- and lhb- expressing gonadotropes, with gnrhr2a being the most prominently expressed isoform. While steroid exposure had no effect on gnrhr1b expression, all steroids affected gnrhr2a transcript levels in at least one maturity stage. These and previous results from our group point to Gnrhr2a as the main modulator of gonadotropin regulation in cod and that regulation of its gene expression level might function as a direct mechanism for steroid feedback at the pituitary level.


Endocrinology ◽  
1997 ◽  
Vol 138 (3) ◽  
pp. 1224-1231 ◽  
Author(s):  
Ursula B. Kaiser ◽  
Andrzej Jakubowiak ◽  
Anna Steinberger ◽  
William W. Chin

Abstract The hypothalamic hormone, GnRH, is released and transported to the anterior pituitary in a pulsatile manner, where it binds to specific high-affinity receptors and regulates gonadotropin biosynthesis and secretion. The frequency of GnRH pulses changes under various physiological conditions, and varying GnRH pulse frequencies have been shown to regulate differentially the secretion of LH and FSH and the expression of the gonadotropin α, LHβ, and FSHβ subunit genes in vivo. We demonstrate differential effects of varying GnRH pulse frequency in vitro in superfused primary monolayer cultures of rat pituitary cells. Cells were treated with 10 nm GnRH pulses for 24 h at a frequency of every 0.5, 1, 2, or 4 h. α, LHβ, and FSHβ messenger RNA (mRNA) levels were increased by GnRH at all pulse frequencies. α and LHβ mRNA levels and LH secretion were stimulated to the greatest extent at a GnRH pulse frequency of every 30 min, whereas FSHβ mRNA levels and FSH secretion were stimulated maximally at a lower GnRH pulse frequency, every 2 h. GnRH receptor (GnRHR) mRNA levels also were increased by GnRH at all pulse frequencies and were stimulated maximally at a GnRH pulse frequency of every 30 min. Similar results were obtained when the dose of each pulse of GnRH was adjusted to maintain a constant total cumulative dose of GnRH over 24 h. These data show that gonadotropin subunit gene expression is regulated differentially by varying GnRH pulse frequencies in vitro, suggesting that the differential effects of varying GnRH pulse frequencies on gonadotropin subunit gene expression occur directly at the level of the pituitary. The pattern of regulation of GnRHR mRNA levels correlated with that of α and LHβ but was different from that of FSHβ. This suggests that α and LHβ mRNA levels are maximally stimulated when GnRHR levels are relatively high, whereas FSHβ mRNA levels are maximally stimulated at lower levels of GnRHR expression, and that the mechanism for differential regulation of the gonadotropins by varying pulse frequencies of GnRH may involve levels of GnRHR. Furthermore, these data suggest that the mechanisms whereby varying GnRH pulse frequencies stimulate α, LHβ, and GnRHR gene expression are similar, whereas the stimulation of FSHβ mRNA levels may be different.


2006 ◽  
Vol 78 ◽  
pp. S25-S33 ◽  
Author(s):  
Bodil K. Larsen ◽  
Anne Bjørnstad ◽  
Rolf C. Sundt ◽  
Ingrid C. Taban ◽  
Daniela M. Pampanin ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Andrea C. Romero ◽  
Eugenio Vilanova ◽  
Miguel A. Sogorb

The embryonic Stem cell Test (EST) is a validated assay for testing embryotoxicityin vitro. The total duration of this protocol is 10 days, and its main end-point is based on histological determinations. It is suggested that improvements on EST must be focused toward molecular end-points and, if possible, to reduce the total assay duration. Five days of exposure of D3 cells in monolayers under spontaneous differentiation to 50 ng/mL of the strong embryotoxic 5-fluorouracil or to 75 μg/mL of the weak embryotoxic 5,5-diphenylhydeantoin caused between 20 and 74% of reductions in the expression of the following genes:Pnpla6,Afp,Hdac7,Vegfa, andNes. The exposure to 1 mg/mL of nonembryotoxic saccharin only caused statistically significant reductions in the expression ofNes. These exposures reduced cell viability of D3 cells by 15, 28, and 34%. We applied these records to the mathematical discriminating function of the EST method to find that this approach is able to correctly predict the embryotoxicity of all three above-mentioned chemicals. Therefore, this work proposes the possibility of improve EST by reducing its total duration and by introducing gene expression as biomarker of differentiation, which might be very interesting forin vitrorisk assessment embryotoxicity.


2020 ◽  
Vol 9 ◽  
pp. 1749
Author(s):  
Fatemeh Amini Chermahini ◽  
Elham Raeisi ◽  
Mathias Hossain Aazami ◽  
Abbas Mirzaei ◽  
Esfandiar Heidarian ◽  
...  

Background: Bromelain enhances anticancer impacts to chemotherapeutic agents. The question as to whether bromelain does promote in-vitro cytotoxic and proapoptotic effects of cisplatin on human prostatic carcinoma PC3 cell line was investigated. Materials and Methods: PC3 (human prostatic carcinoma) cells were treated either single or in combination with bromelain and/or cisplatin. MTT, clonogenic assay, flow cytometry and real-time quantitative polymerase chain reaction were used to investigate cell viability, colony formation, proapoptotic potential and p53 gene expression, respectively. Results: Cisplatin (IC10) combined with bromelain (IC40) significantly affected PC3 cell viability, inhibited colony formation, as well increased p53 proapoptotic gene expression compared to cisplatin single treatment. Nevertheless, bromelain-cisplatin chemoherbal combination did not display any additive proapoptotic effect compared to single treatments. Conclusion: Bromelain-cisplatin chemoherbal combination demonstrated synergistic in-vitro anticancer effect on human prostatic carcinoma cell line, PC3, that drastically reduced required cisplatin dose. [GMJ.2020;9:e1749]


2008 ◽  
Vol 20 (1) ◽  
pp. 166
Author(s):  
V.-H. Dang ◽  
E.-B. Jeung

The term endocrine disruptor (ED) has been used widely to characterize natural and synthetic environmental compounds that may interfere with the endocrine system(s) of humans and wildlife. In previous studies, we demonstrated that in vitro single exposure to EDs induces CaBP-9k expression, a useful biomarker for detecting the estrogenic activities of EDs in rat pituitary GH3 cells. Here we employ the identical model to examine the effects of EDs in the regulation of growth hormone (GH) gene expression, an important hormone in growth, development, and body composition. We measured levels of GH mRNA transcription and GH release using semi-quantitative RT-PCR and EIA kit, respectively. GH3 cells were treated with alkyphenols (APs), i.e., octyl-phenol (OP), nonyl-phenol (NP), and bisphenol A (BPA), in a dose-dependent manner (10–5, 10–6, and 10–7 M) and harvested following 24 h of treatment. Cells were also exposed to a high concentration (10–5 M) of OP, NP, or BPA and harvested at various time points (1, 3, 6, 12, and 24 h). An anti-estrogen, ICI 182780 (10–7 M) was used to examine the potential involvement of estrogen receptor (ER) in the induction of GH by EDs through an ER-mediated pathway. The data were analyzed by one-way ANOVA, followed by Tukey's multiple comparison. OP, NP, and BPA induced a significant increase in GH gene expression at high (10–5 M) and medium (10–6 M) doses at 24 h. ED-exposure induced a marked increase in GH gene transcription as early as 6 h and peaked at 12 h. Co-treatment with ICI 182780 significantly attenuated ED-induced GH expression in GH3 cells. Interestingly, the level of in vitro GH release was increased significantly at 24 h in response to OP, NP, or BPA, whereas co-treatment with ICI 182780 significantly diminished ED-induced GH secretion in GH3 cells, indicating that ER may play a part in both GH gene transcription and GH release in these cells. Here we demonstrate for the first time that single in vitro exposure to OP, NP, or BPA results in an increase in GH expression at 24 h in GH3 rat pituitary cells. These results may provide new insight into the mode of ED action in GH gene regulation as well as the biological pathway underlying these molecular events. Furthermore, data showing GH responsiveness evoked by EDs supports the aim to develop an assay for use in predicting adverse health effects of EDs in humans and wildlife.


2012 ◽  
Vol 178 (2) ◽  
pp. 206-215 ◽  
Author(s):  
Kjetil Hodne ◽  
Kristine von Krogh ◽  
Finn-Arne Weltzien ◽  
Olav Sand ◽  
Trude M. Haug

1966 ◽  
Vol 23 (8) ◽  
pp. 1249-1255 ◽  
Author(s):  
D. R. Idler ◽  
H. C. Freeman

Corpuscles of Stannius tissue of Atlantic cod (Gadus morhua L.) transformed [4-14C] pregnenolone to progesterone and [4-14C] progesterone to 11-desoxycorticosterone in vitro. These results establish the presence of 3β-hydroxysteroid dehydrogenase, Δ5-3-ketoisomerase and 21-hydroxylase. Transformation of the 14C-steroid precursors to several as yet unidentified substances also occurred.


Sign in / Sign up

Export Citation Format

Share Document