scholarly journals Thermal Performance of a Heated Pipe in the Presence of a Metal Foam and Twisted Tape Inserts

Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 195
Author(s):  
K. Papazian ◽  
Z. Al Hajaj ◽  
M. Z. Saghir

To meet the demand for more efficient ways of cooling and heating, new designs and further development of heat exchangers is essential in industry. The present study focuses on the thermal performance of a circular pipe with two inserts. The first insert consists of a porous medium having a porosity of 0.91, and the second one consists of a single twist solid insert. Different ranges of heating conditions have been applied for different flow rates. Water and titanium dioxide (TiO2) nanofluid 1% vol are the liquid media used for cooling. Laminar flow is assumed for two different Reynolds numbers of 1000 and 2000. The results of the study have shown that the twisted tape insert increases the thermal efficiency of the pipe more than the porous media insert and the plain pipe. In addition, different temperature readings in the cross section of the pipe have indicated that the twisted tape helps mixing up the fluid and provides a constant temperature in the overall volume of the fluid, whereas for the porous media insert and plain pipe the fluid temperature increases in the fluid particles close to the pipe inner surface. TiO2 nanofluid exhibited an enhancement when compared to water for a plain and porous pipe. However, this enhancement was absent when a twisted insert is used.

2018 ◽  
Vol 24 (3) ◽  
pp. 42
Author(s):  
Kamal Mohammed Ali ◽  
Abdalrazzaq K. Abbas

Twisted tape insertion in smooth plain tube is one of types of passive methods that is used to enhance heat transfer. Swirl fluid flow inside tube and related heat transfer characteristics are very complex. ANSYS FLUENT (V 16.1) and ASPEN industrial program are used in analyzing this technique for enhancement heat transfer. A circular plain tube has length L=8534mm and 17 mm inner diameter with twisted tape has twist ratio of y = (H/D) = (150/17) =8.8 along with a plain tube were considered for this study. Eight Reynolds numbers (Re) of 784, 1000, 2000, 3000, 4000, 5000, 6000 and 7000 are used to analyze the response of thermal performance. Crude oil API 28 exit temperature, film heat transfer coefficient, Nusselt number and overall enhancement ratio results are presented for both empty and inserted plain tube with comparison between the two cases. An increase of 0.76 to 2.36 overall enhancement is predicted with twist ratio 8.8 for Reynolds number 784 to 7000 respectively.  


2015 ◽  
Vol 26 (06) ◽  
pp. 1550061 ◽  
Author(s):  
Ebrahim Afshari ◽  
Nasser Baharlou Houreh

A membrane humidifier with porous media flow field (metal foam) can provide more water transfer, low manufacturing complexity and low cost in comparison with the conventional humidifier. In this study, a two-dimensional numerical model is developed to investigate the performance of the humidifier with porous metal foam. The results indicate that the dew point increases with a decrease in the permeability, but at permeabilities lower than 10-8 the pressure drop increases extremely. At all ranges of pressures, temperatures and flow rates of humidifier inlet, the pressure drop in humidifier with porous media flow field is only about 0.5 kPa higher than that of the conventional humidifier, which is not significant and it can be ignored. An increase in the pressure at dry side inlet and wet side inlet of the humidifier results in a better humidifier performance. Humidifier performs better at high flow rates and temperatures of humidifier wet side inlet. At all ranges of pressures, flow rates and temperatures humidifier with porous metal foam indicates better performance.


2018 ◽  
Vol 24 (7) ◽  
pp. 1
Author(s):  
Kamal Mohammed Ali ◽  
Abdalrazzaq K. Abbas

Twisted tape insertion in the smooth plain tube is one of the types of passive methods that are used to enhance heat transfer. Swirl fluid flow inside the tube and related heat transfer characteristics are very complex. ANSYS FLUENT (V 16.1) and ASPEN industrial program are used in analyzing this technique for enhancement heat transfer. A circular plain tube has length L=8534mm and 17 mm inner diameter with a twisted tape of twist ratio of y = (H/D) = (150/17) =8.8 along the plain tube were considered for this study. Eight Reynolds numbers (Re) of 784, 1000, 2000, 3000, 4000, 5000, 6000 and 7000 are used to analyze the response of thermal performance. Crude oil API 28 exit temperature, film heat transfer coefficient, Nusselt number and overall enhancement ratio results are presented for both empty and inserted plain tube with a comparison between the two cases. An increase of 0.76 to 2.36 overall enhancement is predicted with twist ratio 8.8 for Reynolds number 784 to 7000 respectively.  


Author(s):  
Aggrey Mwesigye ◽  
Zhongjie Huan ◽  
Josua P. Meyer

In this paper, the thermal performance of a high concentration ratio parabolic trough system and the potential for improved thermal performance using Syltherm800-CuO nanofluid were investigated and presented. The parabolic trough system considered in this study has a concentration ratio of 113 compared with 82 in current commercial systems. The heat transfer fluid temperature was varied between 350 K and 650 K and volume fractions of nanoparticle were in the range 1–6%. Monte-Carlo ray tracing was used to obtain the actual heat flux on the receiver’s absorber tube. The obtained heat flux profiles were subsequently coupled with a computational fluid dynamics tool to investigate the thermal performance of the receiver. From the study, the results show that with increased concentration ratios, receiver thermal performance degrades, with both the receiver heat loss and the absorber tube circumferential temperature differences increasing, especially at low flow rates. The results further show that the use of nanofluids significantly improves receiver thermal performance. The heat transfer performance increases up to 38% while the thermal efficiency increases up to 15%. Significant improvements in receiver thermal efficiency exist at high inlet temperatures and low flow rates.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Author(s):  
C. P. Howard

The results are presented from a numerical finite-difference method of calculation for the transient behavior of porous media when subjected to a step change in fluid temperature considering the case where the longitudinal thermal heat conduction cannot be neglected. These results, given in tabular and graphical form, provide a useful means for evaluating the heat-transfer data obtained from the transient testing of compact heat-exchanger surfaces.


1982 ◽  
Vol 104 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Manlio Bertela` ◽  
Fabio Gori

Unsteady and steady flow in a cylindrical chamber with a rotating cover has been studied for two Reynolds numbers and three aspect ratio values. The structure of the velocity and pressure fields in the apparatus is described. Primary and secondary volumetric flow rates and torque coefficients are also calculated for all six cases solved.


Sign in / Sign up

Export Citation Format

Share Document