scholarly journals Review of Suspended Sediment Transport Mathematical Modelling Studies

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 23
Author(s):  
Joseph T. Wallwork ◽  
Jaan H. Pu ◽  
Snehasis Kundu ◽  
Prashanth R. Hanmaiahgari ◽  
Manish Pandey ◽  
...  

This paper reviews existing studies relating to the assessment of sediment concentration profiles within various flow conditions due to their importance in representing pollutant propagation. The effects of sediment particle size, flow depth, and velocity were considered, as well as the eddy viscosity and Rouse number influence on the drag of the particle. It is also widely considered that there is a minimum threshold velocity required to increase sediment concentration within a flow above the washload. The bursting effect has also been investigated within this review, in which it presents the mechanism for sediment to be entrained within the flow at low average velocities. A review of the existing state-of-the-art literature has shown there are many variables to consider, i.e., particle density, flow velocity, and turbulence, when assessing the suspended sediment characteristics within flow; this outcome further evidences the complexity of suspended sediment transport modelling.

1993 ◽  
Vol 27 (5-6) ◽  
pp. 81-91 ◽  
Author(s):  
B. P. Coghlan ◽  
R. M. Ashley ◽  
C. Jefferies

The data from a two and a half year field study were used to assess the performance of various suspended sediment transport modelling methods. The models selected for this purpose were those proposed by Ackers-White and by Sonnen and these have been assessed following site specific calibrations. A modified version of the Ackers-White model and a rating curve based on a regressional analysis of flowrate versus total suspended solids were also tried. The calibrated verion of the Ackers-White model was selected as giving the best overall accuracy for storm and dry weather conditions. A validation of the selected model using further data for the same site gave approximately 69% of predicted concentrations between 1/2 and 2 times the observed values.


2012 ◽  
Vol 212-213 ◽  
pp. 55-58
Author(s):  
Jie He ◽  
Xin Sheng Zhao ◽  
Yu Fan Zhu

Taizhou Bay is an estuary with high tidel range, middle tidal current and low sediment concentration. For the sea floor is very dense, it is stable in the usual water regimen. The numerical model is introduced to simulate the suspended sediment transport in Taizhou Bay. And the recent hydrologic data and the seabed change have been validated by the numerical model. The movement of tidal current and sediment in Dagagn Bay are simulated, and the sediment siltation in port designed is calculated by the model. The results show that the sediment source is from the shoal produced by the ebb current, and the sediment silting is decreased two-thirds by the cofferdam back of the bay, because the way of the suspended sediment is stopped by the cofferdam from the shoal to the harbor.


2021 ◽  
Vol 9 (11) ◽  
pp. 1300
Author(s):  
Troels Aagaard ◽  
Joost Brinkkemper ◽  
Drude F. Christensen ◽  
Michael G. Hughes ◽  
Gerben Ruessink

The existence of sandy beaches relies on the onshore transport of sand by waves during post-storm conditions. Most operational sediment transport models employ wave-averaged terms, and/or the instantaneous cross-shore velocity signal, but the models often fail in predictions of the onshore-directed transport rates. An important reason is that they rarely consider the phase relationships between wave orbital velocity and the suspended sediment concentration. This relationship depends on the intra-wave structure of the bed shear stress and hence on the timing and magnitude of turbulence production in the water column. This paper provides an up-to-date review of recent experimental advances on intra-wave turbulence characteristics, sediment mobilization, and suspended sediment transport in laboratory and natural surf zones. Experimental results generally show that peaks in the suspended sediment concentration are shifted forward on the wave phase with increasing turbulence levels and instantaneous near-bed sediment concentration scales with instantaneous turbulent kinetic energy. The magnitude and intra-wave phase of turbulence production and sediment concentration are shown to depend on wave (breaker) type, seabed configuration, and relative wave height, which opens up the possibility of more robust predictions of transport rates for different wave and beach conditions.


1996 ◽  
Vol 33 (9) ◽  
pp. 61-67 ◽  
Author(s):  
Lin Huseng ◽  
Benoit Le Guennec

The classical solid transport theory has been used to analyse the experimental results obtained from the No. 13 combined sewer trunk of Marseille for more than two years. This study demonstrates that the sediment transport phenomena in a combined sewer trunk are nothing other than the classical ones. A numerical model has been established according to the analyses. Based on a permanent flow regime, this model considers not only the effects of the real channel geometry, non-uniform particles size, but also the coexistence of mineral and organically materials. Some particular sediment transport phenomena such as the armouring of bed have also been taken into account. It also shows that although the influence of the suspension particles is not necessarily considered, the simulation including the variations of particle density with each granular fraction may be improved.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 192 ◽  
Author(s):  
Yuting Li ◽  
Zhiyao Song ◽  
Guoqiang Peng ◽  
Xuwen Fang ◽  
Ruijie Li ◽  
...  

This study presents an incorporation and application of a two-dimensional, unstructured-grid hydrodynamic model with a suspended sediment transport module in Daishan, China. The model is verified with field measurement data from 2017: water level, flow velocities and suspended sediment concentration (SSC). In the application on the Daishan, the performance of the hydrodynamic model has been satisfactorily validated against observed variations of available measurement stations. Coupled with the hydrodynamic model, a sediment transport model has been developed and tested. The simulations agreed quantitatively with the observations. The validated model was applied to the construction of breakwaters and docks under a different plan. The model can calculate the flow field and siltation situation under different breakwater settings. After we have analyzed the impact of existing breakwater layout schemes and sediment transport, a reasonable plan will be selected. The results show that the sea area near the north of Yanwo Shan and Dongken Shan has a large flow velocity exceeding 2.0 m/s and the flow velocity within the isobath of 5 m is small, within 0.6 m/s. According to the sediment calculation, the dock project is feasible. However, the designed width of the fairway should be increased to ensure the navigation safety of the ship according to variation characteristics of cross flow velocity in channel.


2009 ◽  
Vol 57 (2) ◽  
pp. 123-135 ◽  
Author(s):  
Eduardo Siegle ◽  
Carlos A. F. Schettini ◽  
Antonio H. F. Klein ◽  
Elírio E. Toldo Jr.

Estuarine hydrodynamics is a key factor in the definition of the filtering capacity of an estuary and results from the interaction of the processes that control the inlet morphodynamics and those that are acting in the mixing of the water in the estuary. The hydrodynamics and suspended sediment transport in the Camboriú estuary were assessed by two field campaigns conducted in 1998 that covered both neap and spring tide conditions. The period measured represents the estuarine hydrodynamics and sediment transport prior to the construction of the jetty in 2003 and provides important background information for the Camboriú estuary. Each field campaign covered two complete tidal cycles with hourly measurements of currents, salinity, suspended sediment concentration and water level. Results show that the Camboriú estuary is partially mixed with the vertical structure varying as a function of the tidal range and tidal phase. The dynamic estuarine structure can be balanced between the stabilizing effects generated by the vertical density gradient, which produces buoyancy and stratification flows, and the turbulent effects generated by the vertical velocity gradient that generates vertical mixing. The main sediment source for the water column are the bottom sediments, periodically resuspended by the tidal currents. The advective salt and suspended sediment transport was different between neap and spring tides, being more complex at spring tide. The river discharge term was important under both tidal conditions. The tidal correlation term was also important, being dominant in the suspended sediment transport during the spring tide. The gravitational circulation and Stokes drift played a secondary role in the estuarine transport processes.


Author(s):  
Hong-Ming Liu ◽  
Wen-cheng Liu ◽  
Chih-Yu Chiu

A three-dimensional, unstructured grid, hydrodynamic and suspended-sediment transport model (i.e., SELFE-SED) was developed to simulate temporal and spatial variations of suspended sediment and was applied to the subtropical subalpine Tsuei-Feng Lake (TFL) of Taiwan. The model was validated with measured water level and suspended‑sediment concentration in 2009, 2010, and 2011. The overall model simulation results are in quantitative agreement with the observational data. The validated model was then applied to explore the most important parameter that affects the suspended-sediment concentration and to investigate the effect of wind stress on the mean current and suspended‑sediment distribution in this shallow lake. Modeling results of sensitivity analysis reveal that the settling velocity is a crucial parameter and erosion rate is less important in the suspended-sediment transport model. Remarkable lake circulation was found based on the strength of wind speed and wind direction. Strong wind would result in higher mean current in the top layer and suspended-sediment distribution in the top and bottom layers. This study demonstrated that the wind stress played a significant influence on mean circulation and suspended-sediment transport in a shallow lake.


2018 ◽  
Vol 40 ◽  
pp. 05025 ◽  
Author(s):  
Jeremy Lepesqueur ◽  
Renaud Hostache ◽  
Núria Martinez-Carreras ◽  
Luc Manceau ◽  
Claire Delus ◽  
...  

Many studies focusing on suspended sediment transport modelling in river systems only consider one class of sediment grain size. Rather recently, the SISYPHE sediment transport model has integrated sand-mud mixture transport processes using two classes of sediment. However, this new modelling framework still suffers from limitations, and increasing the number of sediment classes would arguably improve sediment transport and therefore riverbed evolution simulations. Moreover, current sediment transport models do not simulate sediment particle aggregation and disaggregation processes while these can play an important role in sediment transport. Integrating these new concepts would then contribute to significant improvements to river bed morphodynamics and sediment transport modelling. In this study, we further develop the SISYPHE model by extending the sediment particle size distribution to ten classes and integrating flocculation processes (coupling with the flocculation FLOCMOD model). The preliminary results we present in this paper are based on a large-scale flood event, which occurred in river Orne, north-eastern France. We clearly show that the proposed developments of SYSIPHE improves qualitatively and quantitatively the predictions of sediment transport and riverbed morphodynamics.


Sign in / Sign up

Export Citation Format

Share Document