scholarly journals Structural Characterization of a Neutral Polysaccharide from Cucurbia moschata and Its Uptake Behaviors in Caco-2 Cells

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2357
Author(s):  
Fei Li ◽  
Solju Pak ◽  
Jing Zhao ◽  
Yunlu Wei ◽  
Yuyu Zhang ◽  
...  

A neutral pumpkin polysaccharide (NPPc) was extracted from Cucurbia moschata and its structural characterization is performed. Moreover, uptake behaviors of an NPPC were investigated at the cellular level. The results showed that NPPc, an average molecular weight (Mw) of 9.023 kDa, was linear (1→4)-α-D-Glcp residues in the backbone, which branched point at O-6 position of (1→4,6)-α-D-Glcp. The side chain contained (1→6)-α-D-Glcp and terminal glucose. The cellular uptake kinetics results showed that the uptake of fluorescent-labeled NPPc was in time- and dose-dependent manners in Caco-2 cells. For subcellular localization of NPPc, it was accumulated in endoplasmic reticulum and mitochondrion. This study illustrates the characteristics on the uptake of NPPc and provides a rational basis for the exploration of polysaccharides absorption in intestinal epithelium.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nam Vu Trung ◽  
Mai Ngoc Nguyen ◽  
Anh Nguyen Thi Ngoc ◽  
Ni Pham Thi ◽  
Tung Tran Quang ◽  
...  

Homopolymers and copolymers derived from 2,5-furandicarboxylic acid have been extensively studied for their potential in the development of sustainable plastics. This research definitely spotlighted the synthesis of poly(ethylene-co-butylene 2,5-furandicarboxylate) copolymer via the two-step melting polycondensation with various ethylene glycol/1,4-butanediol molar ratios. The structural characterization of the obtained biobased copolymer was carried out by ATR-FTIR and 1H NMR. The average molecular weight of the obtained copolymer was determined by the intrinsic viscosity measurements. It was found that ethylene glycol was preferentially incorporated into the copolymer structures when the molecular weight of the products was not high enough (>18000). The decomposition of two types of monomer units of the obtained copolymer was proven through the degradation two-step process by TGA measurements.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4443
Author(s):  
Jiangyan Huo ◽  
Min Lei ◽  
Feifei Li ◽  
Jinjun Hou ◽  
Zijia Zhang ◽  
...  

A novel homogeneous polysaccharide named GEP-1 was isolated and purified from Gastrodia elata (G. elata) by hot-water extraction, ethanol precipitation, and membrane separator. GEP-1, which has a molecular weight of 20.1 kDa, contains a polysaccharide framework comprised of only glucose. Methylation and NMR analysis showed that GEP-1 contained 1,3,6-linked-α-Glcp, 1,4-linked-α-Glcp, 1,4-linked-β-Glcp and 1,4,6-linked-α-Glcp. Interestingly, GEP-1 contained citric acid and repeating p-hydroxybenzyl alcohol as one branch. Furthermore, a bioactivity test showed that GEP-1 could significantly promote the growth of Akkermansia muciniphila (A. muciniphila) and Lacticaseibacillus paracasei (L.paracasei) strains. These results implied that GEP-1 might be useful for human by modulating gut microbiota.


2017 ◽  
Vol 872 ◽  
pp. 165-170
Author(s):  
Shi Chao Lu ◽  
Yang Chuan Ke ◽  
Qian Zhou ◽  
Zhao Rui Meng ◽  
Guo Liang Zhang ◽  
...  

The carboxyl terminated poly (L-lactic acid) (PLLA) prepolymers were prepared via polycondensation of L-lactic acid and 1,6-adipic acid (end capping agent) under the catalyst of stannous octoate. The effects of synthetic condition, such as reaction temperature, amount of catalyst, content of the end capping agent, etc, on the molecular weight of PLLA were discussed. Fourier transform infrared and 1H nuclear magnetic resonance were used to characterize the PLLA prepolymers. The results indicated that the polycondensation was performed under an optimum reaction condition as following: the amount of the catalyst was 500 ppm based on the mass of lactic acid, the amount of the end capping agent was 1% (the molar amount of the lactic acid), and the polymerization temperature was 170 °C. The viscosity-average molecular weight of the product reached 2.826×104 at this polymerization temperature and the yield was 73.34%.


RSC Advances ◽  
2017 ◽  
Vol 7 (75) ◽  
pp. 47183-47189 ◽  
Author(s):  
M. Hempe ◽  
M. Reggelin

The synthesis and structural characterization of a series of dihydroindeno[1,2-b]fluorene (IF) derivatives with various side chain substituents is reported.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1230
Author(s):  
Jie Li ◽  
Jinhua Du

This research was to explore the distribution and some molecular characterization of arabinoxylan in wheat beer (B), beer foam (BF) and defoamed beer (DB) because of the crucial influences of arabinoxylan on wheat beer and its foam. The purified arabinoxylan from B, BF, and DB were fractionated by ethanol of 50%, 67%, 75%, and 80%. The monosaccharide composition, substitution degree (Ara/Xyl ratio, A/X), and average degrees of polymerization (avDP) of arabinoxylan were investigated. Molecular weight and microstructure were also involved in this study by GPC-LLS and SEM, respectively. Under the same ethanol concentration, the arabinoxylan content in the BF was higher than the other two, respectively, and it was precipitated in BF fraction with 50% ethanol which accounted for 80.84% of the total polysaccharides. Meanwhile, the greatest substitution degree (A/X) and highest value of avDP of the arabinoxylan was found in all beer foam fractions regardless of the concentration of ethanol used. The average degrees of polymerization (avDP) of arabinoxylan displayed a significant difference (p < 0.05) among B, BF, and DB. Furthermore, arabinoxylan presented varied microstructure with irregular lamellas and spherical structures and the weight-average molecular weight (Mw) of arabinoxylan showed the lowest values in BF, while the largest values were shown in DB. Therefore, arabinoxylan was more accumulated in beer foam, especially in 50% ethanol, characterised by greater value of A/X and avDP, as well as lower Mw. It was suggested that the arabinoxylan played important roles in maintaining wheat beer foam characteristics.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1269
Author(s):  
Daniel González-Fernández ◽  
Mercedes Torneiro ◽  
Massimo Lazzari

We provide fundamental guidelines in the form of a tutorial to be taken into account for the preparation and characterization of a specific class of poly(ethylene glycol) (PEG) derivatives, namely azide-terminated PEGs. Special attention is given to the effect of these chain end groups and their precursors on properties affecting the PEGylation of proteins, nanoparticles and nanostructured surfaces. Notwithstanding the presence of 13C satellite peaks, we show that 1H NMR enables not only the routine quantitative determination of chain-end substitution, but is also a unique method to calculate the absolute number average molecular weight of PEG derivatives. In the use of size exclusion chromatography to get molecular weight distributions, we highlight the importance of distinguishing between eventual secondary reactions involving molecular weight changes and the formation of PEG complexes due to residual amounts of metal cations from reactants. Finally, we show that azide end groups affect PEG melting behavior. In contrast to oxygen-containing end groups, azides do not interact with PEG segments, thus inducing defect formation in the crystal lattice and the reduction of crystal sizes. Melting temperature and degree of crystallinity decrease become especially relevant for PEGs with very low molecular weight, and its comprehension is particularly important for solid-state applications.


Polymer ◽  
1998 ◽  
Vol 39 (24) ◽  
pp. 6127-6135 ◽  
Author(s):  
Hiroki Uehara ◽  
Mitsuhiro Nakae ◽  
Tetsuo Kanamoto ◽  
Osamu Ohtsu ◽  
Akira Sano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document