scholarly journals Implication of Row Orientation Changes on Fruit Parameters of Vitis vinifera L. cv. Riesling in Steep Slope Vineyards

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2682
Author(s):  
Timo Strack ◽  
Manfred Stoll

Row orientation, among others, is a crucial factor in determining grapevine performance and health status, thus affecting berry components that form the basis of the later wine profile. However, the literature about the impact of changes in row orientation at steep slope sites on grapevine fruit composition as well as the differentiation between canopy sides hardly exists. Thus, the aim of this work was to gain knowledge about the impact of row orientation in steep slope vineyards on selected primary and secondary metabolites in berries of Vitis vinifera L. cv. Riesling. Samples were taken from both canopy sides of different row orientations of terraced and downslope vineyards in steep slopes. Free amino acids in the juice and flavonols in the berry skin had a positive correlation to sunlight exposure. Furthermore, grapevines showed adaptations to constantly higher light conditions, e.g., physiologically in reduction in chlorophyll content or protective mechanisms resulting in a lower susceptibility to sunburn damage. Thus, grapevine fruit parameters are affected by row orientation change in steep slopes.

2014 ◽  
Vol 179 ◽  
pp. 239-247 ◽  
Author(s):  
Vania Lanari ◽  
Alberto Palliotti ◽  
Paolo Sabbatini ◽  
G. Stanley Howell ◽  
Oriana Silvestroni

Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 176
Author(s):  
Gastón Gutiérrez-Gamboa ◽  
Irina Díaz-Galvéz ◽  
Nicolás Verdugo-Vásquez ◽  
Yerko Moreno-Simunovic

A trial was conducted during the 2005–2006 season in order to determine the effects of different leaf-to-fruit ratios on yield components and fruit composition in four Vitis vinifera L. cultivars. The treatments consisted of selecting shoots of four lengths (>1.3 m, 1.3–0.8 m, 0.8–0.4 m, and <0.4 m) with two crop levels (1–2 clusters/shoot), which allowed defining eight ratios. Berry composition and yield components were measured. The treatments affected the accumulation of soluble solids in “Sauvignon blanc”, “Cabernet Sauvignon”, and “Syrah”, delaying it as the ratio decreased. All yield components were affected in “Sauvignon blanc”, while bunch weight and the number of berries per bunch were altered without a clear trend. None of the yield components were affected in “Cabernet Sauvignon”, while the lowest ratio presented the lowest number of berries per bunch in “Syrah”. Total polyphenol index (TPI) was affected in “Carmenère” without a clear trend. A highly significant correlation was found between shoot length and leaf area in all studied cultivars. As the ratio increased, the shoot lignification increased in “Sauvignon blanc”. However, studies must be conducted during more seasons to establish better conclusions about the effects of leaf-to-fruit ratios on yield and fruit composition.


2019 ◽  
Vol 100 (4) ◽  
pp. 1436-1447
Author(s):  
Raul Cauduro Girardello ◽  
Vanessa Rich ◽  
Rhonda J Smith ◽  
Charles Brenneman ◽  
Hildegarde Heymann ◽  
...  

2020 ◽  
pp. 1-15
Author(s):  
Nicolas Fischer ◽  
Thomas Efferth

BACKGROUND: Grapevine (Vitis vinifera L.) as basis for winemaking is one of the most economically important plants in modern agriculture. As requirements in viticulture are increasing due to changing environments, terroir and pests, classical agriculture techniques reach their limits. OBJECTIVE: We summarize the impact of modern “omics” technologies on modern grapevine breeding and cultivation, as well as for dealing with challenges in viniculture caused by environmental or terroir changes and pests and diseases. In this review, we give an overview on current research on the influence of “omics” technologies on modern viticulture. RESULTS: Considerable advances in bioinformatics and analytical techniques such as next generation sequencing or mass spectrometry fueled new molecular biological studies. Modern “omics” technologies such as “genomics”, “transcriptomics”, “proteomics” and “metabolomics” allow the investigation on a large-scale data basis and the identification of key markers. Holistic understanding of genes, proteins and metabolites in combination with external biotic and abiotic factors improves vine and wine quality. CONCLUSION: The rapid evolution in wine quality was only enabled by the progress of modern biotechnological methods developing enology from a handcraft to science.


2011 ◽  
Vol 29 (No. 4) ◽  
pp. 361-372 ◽  
Author(s):  
P. Pavloušek ◽  
M. Kumšta

The quality of grapes is determined above all by the contents of the primary and secondary metabolites. The primary metabolites involve sugars and organic acids, and just these compounds are dealt with in this study. Its objective was to analyse and critically evaluate the primary metabolites in new interspecific varieties and, based on a comparison with European varieties of grapevine (Vitis vinifera L.), to find out the similarities and also possible differences between them. The study evaluates and compares 4 conventional varieties of Vitis vinifera with 11 new interspecific cultivars. The contents and compositions of the individual sugars and acids were estimated by means of the HPLC method. Most of these varieties belong to the group with either medium or low content of malic acid, i.e. with a medium to high &beta; ratio. This corroborates the similarity of interspecific varieties to those of V. vinifera. The cluster analysis identified the existence of two interesting groups of varieties: the first one involved the varieties Riesling, Nativa, Marlen, and Kofranka while the other group consisted of varieties Blaufr&auml;nkisch, Blauer Portugieser, and Laurot. This observation also indicates similarity between Vitis vinifera L. varieties and interspecific cultivars and demonstrates that the contents of the primary metabolites (i.e. sugars and organic acids) are also comparable.


2011 ◽  
Vol 59 (9) ◽  
pp. 4874-4884 ◽  
Author(s):  
Federico J. Berli ◽  
Martín Fanzone ◽  
Patricia Piccoli ◽  
Rubén Bottini

Sign in / Sign up

Export Citation Format

Share Document