scholarly journals Urban Metabolism of Food-Sourced Nitrogen among Different Income Households: A Case Study Based on Large Sample Survey in Xiamen City, China

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2842
Author(s):  
Li Xing ◽  
Tao Lin ◽  
Xiongzhi Xue ◽  
Jiakun Liu ◽  
Meixia Lin ◽  
...  

Food consumption is fundamental for urban households if they are to sustain production and daily life. Nitrogen resulting from food consumption has significantly contributed to pollutant emissions in urban ecosystems. Taking Xiamen city, a rapid urbanizing area of southeast China as a case study, we evaluated the food-sourced nitrogen consumption of households based on a large simple onsite questionnaire survey, as well as differences between households in the consumption of plant-based and animal-based foods. A material flow analysis (MFA) was conducted to simulate the urban metabolism of food-sourced nitrogen and environmental emissions among different income groups. The impacts of household attributes, plant-based food consumption, and animal-based food consumption on environmental nitrogen emissions were examined with a structural equation model (SEM). Our results show that the surveyed households’ diets were more plant-based and less animal-based. Aquatic products and livestock were the source of 43.7% of food-sourced nitrogen, and 84.5% of the food-sourced nitrogen was discharge into the environment through direct discharge and waste treatment. Soil, water, and air emissions accounted for 62.8%, 30.1%, and 7.1% of the food-sourced nitrogen, respectively. Household income, household size, and household area are all associated with accelerating increases of nitrogen emissions released into the environment, though middle-income group households have the highest food-sourced environmental nitrogen emissions. On this basis, we discuss how to better manage the urban metabolism of food-sourced nitrogen, so as to improve urban household consumption, lower nitrogen emissions, and improve food security.

2011 ◽  
Vol 361-363 ◽  
pp. 910-915
Author(s):  
Peng Shen ◽  
Jing Ye ◽  
Ze Qiang Fu ◽  
Bao Gao

Energy (coal) chemical base refers to the industrial cluster which is mainly formed by coal, thermal power, coal chemical and building materials industries within a special region. The constructions of energy (coal) chemical bases promote the in situ conversion of coal resources, reducing water and material consumption as well as pollutant emissions. Through the material flow analysis, the input and output relationship within energy (coal) chemical-base was carried out in this article. And combined with case study, recommendations of key technologies to perfect the energy (coal) chemical-based industrial chain were proposed, so as to promote environmental protection.


Author(s):  
Giovanni Lagioia ◽  
Vera Amicarelli ◽  
Teodoro Gallucci ◽  
Christian Bux

FAO estimates on average more than 1.3 billion tons of food loss and waste (FLW) along the whole food supply chain (equivalent to one-third of total food production) of which more than 670 million tons in developed countries and approximately 630 million tons in developing ones, showing wide differences between countries. In particular, EU data estimates an amount of more than 85 million tons of FLW, equal to approximately 20% of total food production. This research presents two main goals. First, to review the magnitude of FLW at a global and European level and its environmental, social and economic implications. Second, use Material Flow Analysis (MFA) to support and improve FLW management and its application in an Italian potato industry case study. According to the case study presented, MFA has demonstrated the advantages of tracking input and output to prevent FLW and how they provide economic, social, and environmental opportunities.


2008 ◽  
Vol 3 (3) ◽  
pp. 367-374 ◽  
Author(s):  
Heping Huang ◽  
Jun Bi ◽  
Xiangmei Li ◽  
Bing Zhang ◽  
Jie Yang

2009 ◽  
Vol 59 (10) ◽  
pp. 1911-1920 ◽  
Author(s):  
F. Meinzinger ◽  
K. Kröger ◽  
R. Otterpohl

Material Flow Analysis is a method that can be used to assess sanitation systems with regard to their environmental impacts. Modelling water and nutrients flows of the urban water, wastewater and waste system can highlight risks for environmental pollution and can help evaluating the potential for linking sanitation with resource recovery and agricultural production. This study presents the results of an analysis of nitrogen and phosphorus flows of Arba Minch town in South Ethiopia. The current situation is modelled and possible scenarios for upgrading the town's sanitation system are assessed. Two different scenarios for nutrient recovery are analysed. Scenario one includes co-composting municipal organic waste with faecal sludge from pit latrines and septic tanks as well as the use of compost in agriculture. The second scenario based on urine-diversion toilets includes application of urine as fertiliser and composting of faecal matter. In order to allow for variations in the rate of adoption, the model can simulate varying degrees of technology implementation. Thus, the impact of a step-wise or successive approach can be illustrated. The results show that significant amounts of plant nutrients can be provided by both options, co-composting and urine diversion.


2020 ◽  
Vol 12 (11) ◽  
pp. 4358
Author(s):  
Georg Schiller ◽  
Tamara Bimesmeier ◽  
Anh T.V. Pham

Urbanization is a global trend: Since 2007 more than 50% of the world’s population have been living in urban areas, and rates of urbanization are continuing to rise everywhere. This growth in urbanization has led to an increased demand for natural resources, in particular non-metallic minerals such as stones, sand and clay, which account for one third of the entire flow of materials. Generally, these materials are traded within regional markets. This close geographical link between the demand for building materials in urban areas and the material supply in the hinterland leads to massive interventions in the natural environment and landscape. These urban–rural linkages can be revealed by applying Material Flow Analysis (MFA) to the built environment in order to trace the flows of building materials. The objective of this paper is to present a method for quantifying regional material flows by considering the supply and demand of building materials. This will be applied to the Vietnamese case study area of Hanoi and its hinterland province Hoa Binh. The results indicate a consumption of almost 60% of the construction mineral reserves in total secured by planning in the hinterland province considering a period of 15 years. However, this does not allow for the general conclusion that raw materials are sufficiently available. The sand reservoirs are only sufficient for eight years and clay reserves are used up after four years. This increases the need to exploit further raw material reserves, which are becoming increasingly scarce and results in stronger interventions in nature In order to safeguard the hinterland from the negative impacts of urbanization, a new understanding of resource efficiency is needed—one that acknowledges both resource efficiency in the construction of urban structures and appropriate resource conservation in the provision of the raw materials from the hinterland. This will require the creation of new integrated planning approaches between urban and regional planning authorities. Regional MFA is one way of realising such an approach.


2020 ◽  
Vol 148 ◽  
pp. 05002 ◽  
Author(s):  
I Made Wahyu Widyarsana ◽  
Elprida Agustina

The aim of this paper is to identify patterns of waste management in the Bali archipelago tourism area. The Nusa Penida District is a new tourism destination located in the Southeast of Bali. In 2018, there were average 391,071 tourists/day coming and 45,520 local residents live in this area. The total amount of waste produced in Nusa Penida District is 15.90 tonnes/day or 173.61 m3/day. High tourist activities have not been handled by a good waste management. Questionnaires were distributed randomly to the public and tourists to find out the pattern of waste management. Observation also conducted to build the material flow analysis as a waste information baseline. Around 48.21% organic waste used as livestock feed and 8.45% dumped carelessly to the environment. Around 32.51% anorganic waste be burnt and 45.68% waste dumped carelessly. Moreover, Nusa Penida District facing offering waste management problem caused by their cultural activities. In total, around 8.82 tonnes/day waste is dumped in landfills and total unmanaged waste around 6.73 tonnes/day.


Sign in / Sign up

Export Citation Format

Share Document