scholarly journals Vinegar Production from Corinthian Currants Finishing Side-Stream: Development and Comparison of Methods Based on Immobilized Acetic Acid Bacteria

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3133
Author(s):  
Iris Plioni ◽  
Argyro Bekatorou ◽  
Antonia Terpou ◽  
Athanasios Mallouchos ◽  
Stavros Plessas ◽  
...  

Fruit wastes and side-streams can be used for vinegar production to create added value for the agri-food sector and enhance farmer incomes and local economies. In this study, methods for vinegar production by wild and selected acetic acid bacteria (the quick starter Acetobacter aceti and the acid-resistant Komagataeibacter europaeus), free (FC) and immobilized (IC) on a natural cellulosic carrier, are proposed using sweet wine made from the industrial finishing side-stream (FSS) of Corinthian currants as raw material. The results showed all cultures can produce vinegar with 46.65 ± 5.43 g/L acidity, from sweet FSS wine containing 5.08 ± 1.19% alcohol. The effect of immobilization was more obvious in the case of the selected culture, presenting better acetification efficiency, both fresh and after cold storage for 2 months. The vinegars had an antioxidant capacity of 263.5 ± 8.4 and 277.1 ± 6.7 mg/L (as ascorbic acid) and phenolic content 333.1 ± 12.0 and 222.2 ± 2.9 mg/L (as gallic acid) (for FC and IC, respectively). They also had a rich volatilome (140 compounds identified by SPME GC-MS), with higher percentages of esters identified in vinegars made by IC. The results are encouraging for vinegar production with IC of a mixed A. aceti and K. europaeus culture.

2019 ◽  
Vol 2 (1) ◽  
pp. 136
Author(s):  
Alvianty Novitasari ◽  
Warkoyo Warkoyo ◽  
Sri Winarsih

Solid wasted of apple cider containing a lot of compounds such as carbohydrates, glucose, malic acid, and flavonoids. The purpose of this research is to utilize the solid wasted of apple cider as the raw material of apple vinegar. The fermentation process of making apple vinegar in this research using the backstop method. This research consists of 2 steps of the fermentation process. The first step of fermentation using yeast to transform sugar into alcohol. Second step fermentation is a continuance of first step fermentation with the addition of apple vinegar backstop culture which contain Acetobacter aceti with density 4 x 107cfu / ml to transform alcohol to acetic acid. This research uses simple and factorial Randomized Block Design (RBD). Fermentation phase I using simple RBD with the proportion of apple raw material (solid wasted of apple cider: apple) 100% : 0%; 75%: 25%; 50%: 50%; 25%: 75% as factor I. Fermentation phase II using factorial RBD with the combination of factor I and the addition of apple vinegar backstop with concentration 5%, 10%, and 15% as factor II. The results showed that during the first step fermentation process the raw material proportion of apple (solid wasted of apple cider: apple) affected total soluble solids, pH value, and alcohol content. Fermentation phase II showed an interaction between the proportion of the raw material of apple (apple cider waste: apple) and the addition of backstop apple vinegar concentration to total dissolved solids, alcohol content, acetic acid, except pH value. The best results showed treatment with apple material proportion (25% solid wasted of apple cider: 75% apple) and addition of apple vinegar backstop concentration 15 % produce 4.6 g / 100ml acetic acid, 4% soluble solids total, pH value of 3.4 and alcohol residue of 0% (v/v), with colorful organoleptic results quite appealing, the scent is sufficient, and preferences are favored by the panelists.


2006 ◽  
Vol 72 (1) ◽  
pp. 497-505 ◽  
Author(s):  
Shigeru Nakano ◽  
Masahiro Fukaya ◽  
Sueharu Horinouchi

ABSTRACT Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.


2017 ◽  
Vol 5 (16) ◽  
Author(s):  
Julia U. Brandt ◽  
Frank Jakob ◽  
Andreas J. Geissler ◽  
Jürgen Behr ◽  
Rudi F. Vogel

ABSTRACT We report here the complete genome sequences of the acetic acid bacteria (AAB) Acetobacter aceti TMW 2.1153, A. persici TMW 2.1084, and Neoasaia chiangmaiensis NBRC 101099, which secrete biotechnologically relevant heteropolysaccharides (HePSs) into their environments. Upon genome sequencing of these AAB strains, the corresponding HePS biosynthesis pathways were identified.


Author(s):  
O.G.G. Almeida ◽  
E.C.P De Martinis

Metagenomic studies about cocoa fermentation have mainly reported on the analysis of short reads for determination of Operational Taxonomic Units. However, it is also important to determine MAGs, which are genomes deriving from the assembly of metagenomics. For this research, all the cocoa metagenomes from public databases were downloaded, resulting in five datasets: one from Ghana and four from Brazil. Besides, in silico approaches were used to describe putative phenotypes and metabolic potential of MAGs. A total of 17 high-quality MAGs were recovered from these microbiomes, as follows: (i) fungi - Yamadazyma tenuis (n=1); (ii) lactic acid bacteria - Limosilactobacillus fermentum (n=5), Liquorilactobacillus cacaonum (n=1) , Liquorilactobacillus nagelli (n=1), Leuconostoc pseudomesenteroides (n=1) and Lactiplantibacillus plantarum subsp. plantarum (n=1); (iii) acetic acid bacteria - Acetobacter senegalensis (n=2) and Kozakia baliensis (n=1) and (iv) Bacillus subtilis (n=1) Brevundimonas sp. (n=2) and Pseudomonas sp. (n=1). Medium-quality MAGs were also recovered from cocoa microbiomes, including some detected for the first time in this environment ( Liquorilactobacillus vini , Komagataeibacter saccharivorans and Komagataeibacter maltaceti ) and other previously described ( Fructobacillus pseudoficulneus and Acetobacter pasteurianus ). Taken all together, the MAGs were useful to provide an additional description of the microbiome of cocoa fermentation, revealing previously overlooked microorganisms, with prediction of key phenotypes and biochemical pathways. Importance The production of chocolate starts with the harvesting of cocoa fruits and the spontaneous fermentation of the seeds, in a microbial succession that depends on yeasts, lactic acid bacteria and acetic acid bacteria in order to eliminate bitter and astringent compounds present in the raw material, which will be further roasted and grinded to originate the cocoa powder that will enter the food processing industry. The microbiota of cocoa fermentation is not completely know, and yet it advanced from culture-based studies to the advent of Next Generation DNA sequencing, with the generation of a myriad of data, that need bioinformatic approaches to be properly analysed. Although the majority metagenomic of studies have been based on short reads (OTUs), it is also important to analyse entire genomes to determine more precisely possible ecological roles of different species. Metagenome-assembled genomes (MAGs) are very useful for this purpose, and in this paper, MAGs from cocoa fermentation microbiomes were described, as well the possible implications of their phenotypic and metabolic potentials are discussed.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Donny Widianto, Ajeng Dara Pramita, Dan Sri Wedhastri

Most of cocoa beans produced by smallholder farmers were non fermented which can be improved by modifiedfermentation processing. This study was aimed to inverstigate the influence of molasses, yeast Saccharomycescerevisiae, and Acetobacter aceti addition on dried cocoa beans fermentation process.Fresh cocoa beans were dried in a glasshouse and its reducing sugar was analyzed before and after drying. Asmall plastic bucket (20 cm diameter and 30 cm height) with aeration holes was used as fermentation vessel. Driedcocoa beans were soaked in distilled water for 4 hours, inoculated with yeast and acetic acid bacteria cultures, andmolasses were added at two different concentration, i.e, 1 and 1.5 times of reducing sugar lost during drying.Reducing sugar, ethanol, titrated acid, population of yeast, and acetic acid bacteria were monitored duringfermentation. After fermentation the beans were sun dried and its pH and degree of fermentation were determinedto assess the bean quality.The results showed that the addition of molasses mostly at the level of 1.5, S. cerevisiae, and A. aceti increasereducing sugar, ethanol, titrated acid, yeast and acetic acid bacteria of fermentation liquid (pulp). The highestpercentage of fermented beans (68.4 %) was achieved by addition of S. cerevisiae, A. aceti, and molasses atthe level 1.5. It is likely that the addition of S. cerevisiae, A. aceti, and molasses could improve fermentationprocessing of dried cocoa bean.


Author(s):  
B. Praveena ◽  
R. Sonashree ◽  
Rashmi R. Halbavi ◽  
J. Bhavana ◽  
Shamsiya Rizwana ◽  
...  

India is the second-largest producer of contemporary fruits and vegetables. This leads to generation of a large amount of waste, both solid and liquid. This waste is incautiously or carelessly being thrown without any treatment promoting environmental deterioration. The chapter deals with how these fruit wastes, especially pineapple and papaya peels, which are usually discarded during the processing or consumption of the fruit, are useful in preparation of vinegar, which is termed as a useful product from waste. It also discussed the general characteristics of Acetic acid bacteria, importance of the bacteria, and how it can be isolated by natural sources, which is cost effective. So, the waste peels generated after consuming the fruits and vegetables need not be discarded as waste; instead, it can be used in so many ways to produce useful products.


2008 ◽  
Vol 190 (14) ◽  
pp. 4933-4940 ◽  
Author(s):  
Elwood A. Mullins ◽  
Julie A. Francois ◽  
T. Joseph Kappock

ABSTRACT Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO2 loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.


2012 ◽  
Vol 506 ◽  
pp. 575-578 ◽  
Author(s):  
S. Supakod ◽  
A. Wongwicharn

Acetic acid bacteria are used in the production of many kinds of food product: Acetobacter aceti, a starter culture of vinegar fermentation; Acetobacter xylinum, a starter culture of bacterial cellulose production (nata de coco). The objective of this research was to find cheap media for the preparation of seed culture of these bacteria. Coconut water, banana juice and a mixture of coconut water and banana juice (ratio 1:1) were used as inoculation media and compared with HS and GEY, the commonly used media for acetic acid bacteria. Acetobacter aceti TISTR102, Acetobacter xylinum TISTR975, Acetobacter xylinum AGR60 and the isolated Acetobacter xylinum Coc5 were used as the test strains. The pH and total sugar of all media were adjusted as the control media (HS & GEY) at 5.0 and 2% (w/v), respectively. The results found that all strains grew well in each medium and viable cells achieved the level of at least 106 CFU/ml when cultured for 12 hours at 30°C, 200 rpm. The result shows that constitutes of agricultural product such as coconut water and banana juice can be used as cheap inoculation media for acetic acid bacteria.


2021 ◽  
Vol 10 (02) ◽  
pp. 89
Author(s):  
Prima Besty Asthary ◽  
Saepulloh Saepulloh ◽  
Ayu Sanningtyas ◽  
Gian Aditya Pertiwi ◽  
Chandra Apriana Purwita ◽  
...  

Hampir sebanyak 90% industri farmasi di Indonesia masih menggunakan bahan baku impor. Indonesia memiliki salah satu bahan baku yang cukup melimpah yaitu selulosa. Bacterial nanocellulose (BNC) adalah hasil sintesis dari bakteri aerobic seperti bakteri asam asetat Gluconacetobacter spp. yang berbentuk selulosa murni dengan diameter berukuran nano. Bahan baku BNC yang digunakan dalam industri farmasi adalah BNC dalam bentuk slurry atau high viscose nanocellulose. Tujuan penelitian ini adalah untuk memilih bakteri dan kondisi optimum dalam memproduksi BNC. Bakteri yang digunakan adalah Gluconacetobacter xylinus dan Gluconacetobacter intermedius yang berasal dari InaCC-LIPI dan Gluconacetobacter sp. dari industri nata de coco. Inokulum dari ketiga jenis kultur bakteri tersebut dikultivasi selama 7 hari dalam medium Hestrin&Schramm (HS) cair menggunakan kultur statis dan agitasi dengan kecepatan pengadukan 150 rpm pada pH 5 dan suhu 25 ºC. Isolat bakteri Gluconacetobacter sp. dipilih sebagai bakteri penghasil BNC karena memiliki nilai yield paling tinggi. Kemudian isolat tersebut ditumbuhkan pada variasi kecepatan agitasi (100, 150, dan 200 rpm), variasi pH (4,0; 4,5; 5,0; dan 6,0), dan variasi suhu (25-30 ºC). Penelitian ini menunjukkan bahwa Gluconacetobacter sp. memiliki kondisi optimum pada kecepatan agitasi 150 rpm, pH 5,5, dan suhu 27 ºC. Optimization of Bacterial Nanocellulose Production in Agitation Culture MethodsAbstractAlmost 90% of pharmaceutical industry in Indonesia still uses imported raw material. However, Indonesia has one of the abundant raw materials which is cellulose. Bacterial nanocellulose (BNC) is a pure form of nanocellulose biopolymer material synthesized by microbes such as acetic acid bacteria of Gluconacetobacter spp. as pure cellulose and having diameter in nano scale. BNC used in pharmaceutical industry is in the slurry form/high viscose nanocellulose. The purpose of this study is to determine the bacteria and the optimum conditions to produce BNC. The bacteria used were Gluconacetobacter xylinus and Gluconacetobacter intermedius from InaCC-LIPI and Gluconacetobacter sp. from nata industry. The inoculums were cultivated for 7 days in liquid Hestrin & Schramm (HS) medium using static and agitation culture with a stirring speed of 150 rpm at pH 5 and temperature 25 ºC. The production of BNC has been conducted by using Gluconacetobacter sp., because it has the highest yield. Then it was inoculated at different variation of agitation speed (100, 150, and 200 rpm), pH (4.0; 4.5; 5.0; and 6.0), and temperature (25-30 ºC). This research shows that Gluconacetobacter sp. has optimum conditions at the agitation speed of 150 rpm, pH 5.5, and temperature 27 ºC.Keywords: Bacterial nanocellulose, Gluconacetobacter, agitation


Sign in / Sign up

Export Citation Format

Share Document