scholarly journals Bioprospecting for Antithrombotic Polar Lipids from Salmon, Herring, and Boarfish By-Products

Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 416 ◽  
Author(s):  
Alexandros Tsoupras ◽  
Eoin O’Keeffe ◽  
Ronan Lordan ◽  
Shane Redfern ◽  
Ioannis Zabetakis

Marine polar lipids (PLs) have exhibited promising cardioprotection. In this study, marine by-products such as salmon heads (SHs), their brain, eyes and main optic nerves (SBEON), and head-remnants after SBEON removal (RemSH), as well as herring fillets (HFs), herring heads (HHs) and minced boarfish (MB), were evaluated as potential sustainable sources of such bioactive PLs. The antithrombotic bioactivities of PLs derived from these marine by-products were assessed for the first time in human platelets against platelet-activating factor (PAF), thrombin, collagen, and adenosine diphosphate (ADP), while their fatty acid composition was evaluated by gas chromatography–mass spectrometry (GC-MS). PLs from all marine by-products tested possess strong antithrombotic activities against aggregation of human platelets induced by all platelet agonists tested. RemSH, SBEON, HHs, HFs, and MB exhibited strong anti-PAF effects, similar to those previously reported for salmon fillets. PLs from MB had the strongest anti-collagen effects and PLs from SHs and SBEON were the most active against thrombin and ADP. PLs from HHs had similar antithrombotic effects with those from HFs in all agonists. RemSH was less active in all agonists, suggesting that SBEON is the main source of bioactive PLs in SHs. All PLs were rich in omega-3 polyunsaturated fatty acids (ω3PUFA), such as docosahexaenoic acid (DHA) and eicosapentaenoic (EPA) acid, with favourable low values of the ω6/ω3 ratio. Salmon, herring, and boarfish by-products are rich sources of bioactive marine PLs with potent antithrombotic and cardioprotective properties.

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 385 ◽  
Author(s):  
Alexandros Tsoupras ◽  
Ronan Lordan ◽  
Jack Harrington ◽  
Rebecca Pienaar ◽  
Karen Devaney ◽  
...  

Tea provides health benefits, while oxidation is part of tea processing. The effect of oxidation on the antithrombotic properties of tea lipid extracts was evaluated for the first time. Total lipids (TL) extracted from fresh tea leaves and commercial tea powder, before and after 30–60 min of oxidation, were further fractionated into neutral lipids (NL) and polar lipids (PL). The antithrombotic bioactivities of tea TL, PL, and NL were assessed in human platelets against the inflammatory mediator platelet-activating factor. PL were further assessed against thrombin, collagen, and adenosine diphosphate, while their fatty acid composition was evaluated by GC-MS. PL exhibited the strongest antithrombotic effects against all platelet agonists and were rich in omega-3 polyunsaturated (ω3 PUFA) and monounsaturated (MUFA) fatty acids. A decline was observed in the antithrombotic activities, against all platelet agonists tested, for PL after 60 min of oxidation, and on their MUFA content, while their overall ω3 PUFA content and ω6/ω3 ratio remained unaffected. A synergistic effect between tea phenolic compounds and PL protects them against oxidation, which seems to be the rational for retaining the antithrombotic biofunctionalities of PL at a considerable favorable cardioprotective level, even after 60 min of tea oxidation. More studies are required to elucidate the mechanisms of the favorable synergism in tea PL extracts.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1075 ◽  
Author(s):  
Alexandros Tsoupras ◽  
Ronan Lordan ◽  
Eoin O'Keefe ◽  
Katie Shiels ◽  
Sushanta Kumar Saha ◽  
...  

The structures of bioactive polar lipids (PLs) of Irish ale with potent antithrombotic and cardioprotective properties were elucidated. Ale PL was fractionated by preparative thin layer chromatography (TLC) into subclasses, and their antithrombotic effect was assessed against human platelet aggregation induced by the pro-inflammatory mediator, platelet-activating factor (PAF). The fatty acid content and the overall structures of ale PL were elucidated by liquid chromatography mass spectrometry (LC-MS). Phosphatidylcholines (PC) and molecules of the sphingomyelin (SM) family exhibited the strongest anti-PAF effects, followed by phosphatidylethanolamines (PE). PC contained higher amounts of omega-3 polyunsaturated fatty acids (n-3 PUFA) and thus the lowest n-6/n-3 ratio. Bioactive diacyl and alkyl-acyl PC and PE molecules bearing n-3 PUFA at their sn-2 position, especially docosahexaenoic acid (DHA) and α-linolenic acid (ALA) but mostly oleic acid (OA), were identified in both PC and PE subclasses. Eicosapentaenoic acid (EPA) was present only in bioactive PC molecules and not in PE, explaining the lower anti-PAF effects of PE. Bioactive sphingolipid and glycolipid molecules with reported anti-inflammatory and anti-tumour properties, such as specific ceramides and glucosylcerebrosides with sphingosine, phytosphingosine and dihydrosphingosine bases but also specific monogalactodiglycerides and SM species bearing ALA at their sn-2 position, were identified in the SM subclass, providing a rational for its strong bioactivities against the PAF pathway. Further studies are required on the health benefits of bioactive PL from beer and brewery by-products.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 412
Author(s):  
Alexandros Tsoupras ◽  
Donal Moran ◽  
Hayley Pleskach ◽  
Maria Durkin ◽  
Con Traas ◽  
...  

Several bioactives from fruit juices and beverages like phenolics, nucleotides and polar lipids (PL) have exhibited anti-platelet cardio-protective properties. However, apple juice and cider lipid bioactives have not been evaluated so far. The aim of this study was to investigate the anti-platelet and anti-inflammatory effects and structure activity relationships of Irish apple juice and Real Irish cider lipid bioactives against the platelet-activating factor (PAF)- and adenosine diphosphate (ADP)-related thrombotic and inflammatory manifestations in human platelets. Total Lipids (TL) were extracted from low, moderate and high in tannins apple juices and from their derived-through-fermentation cider products, as well as from commercial apple juice and cider. These were separated into neutral lipids (NL) and PL, while all lipid extracts were further assessed for their ability to inhibit aggregation of human platelets induced by PAF and ADP. In all cases, PL exhibited the strongest anti-platelet bioactivities and were further separated by high-performance liquid chromatography (HPLC) analysis into PL subclasses/fractions that were also assessed for their antiplatelet potency. The PL from low in tannins apple juice exhibited the strongest antiplatelet effects against PAF and ADP, while PL from its fermented cider product were less active. Moreover, the phosphatidylcholines (PC) in apple juices and the phosphatidylethanolamines (PE) in apple ciders were the most bioactive HPLC-derived PL subclasses against PAF-induced platelet aggregation. Structural elucidation of the fatty acid composition by gas chromatography mass spectra (GCMS) analysis showed that PL from all samples are rich in beneficial monounsaturated fatty acids (MUFA) and omega 3 (n-3) polyunsaturated fatty acids (PUFA), providing a possible explanation for their strong anti-platelet properties, while the favorable low levels of their omega-6/omega-3 (n-6/n-3) PUFA ratio, especially for the bioactive PC and PE subclasses, further support an anti-inflammatory cardio-protective potency for these apple products. In conclusion, Irish apple juice and Real Irish cider were found to possess bioactive PL compounds with strong antiplatelet and anti-inflammatory properties, while fermentation seems to be an important modulating factor on their lipid content, structures and bioactivities. However, further studies are needed to evaluate these effects.


1991 ◽  
Vol 46 (1-2) ◽  
pp. 111-121 ◽  
Author(s):  
W. Greenaway ◽  
J. May ◽  
T. Scaysbrook ◽  
F. R. Whatley

Abstract Propolis was analyzed by gas chromatography-mass spectrometry for both its headspace volatiles and for the less volatile components of its alcoholic extract (propolis balsam). 181 peaks were located of which 171 representing 150 compounds were identified, including 28 identified in propolis for the first time. The majority of compounds were typical of poplar bud exudate.


1977 ◽  
Author(s):  
M. Ali ◽  
J. Zamecnik ◽  
J. W. D. McDonald

The principle products of arachidonic acid (AA) in platelets are hydroxylated fatty acids and thromboxane B2(TXB2). Prostaglandin D2(PGD2) has been considered to be a nonenzymatic degradation product of prostaglandin H2 formed in the presence of plasma albumin. Using 14C AA as substrate and thin layer and silicic acid chromatography, we have demonstrated PGD2 synthesis by washed (albumin-free) human platelets. The identity of PGD2 was confirmed by gas chromatography-mass spectrometry. In platelets lysed by freezing and thawing synthesis of TXB2 and PGD2 was approximately equal and equally inhibited by pyrazolones.Synthesis of PGD2 by platelets is enzymatic and may contribute to bronchoconstrictor, vasomotor, and inflammatory effects induced by platelet aggregation. Pyrazolones appear to inhibit cyclooxygenase activity rather than the breakdown of cyclic endoperoxides as previously postulated.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 221-226 ◽  
Author(s):  
M Cattaneo ◽  
RL Kinlough-Rathbone ◽  
A Lecchi ◽  
C Bevilacqua ◽  
MA Packham ◽  
...  

Abstract Platelets from two afibrinogenemic patients were used to determine whether fibrinogen is essential for platelet aggregation and to examine whether released fibrinogen contributes to the stabilization of platelet aggregates when platelets have been induced to aggregate and release their granule contents by stimulation with thrombin. The addition of adenosine diphosphate (ADP) to platelet-rich plasma (PRP) or to suspensions of washed platelets from the afibrinogenemic patients caused the formation of small aggregates, which was either not inhibited or only slightly inhibited by the F(ab')2 fragments of an antibody to fibrinogen but was inhibited by an antibody (10E5) to glycoprotein IIb/IIIa. Thus there is a component of ADP-induced platelet aggregation that is not dependent on fibrinogen or other plasma proteins but is dependent on glycoprotein IIb/IIIa. There was little difference in the extent of aggregation and the release of granule contents of normal and afibrinogenemic platelets in response to the release-inducing agents collagen, platelet-activating factor (PAF), sodium arachidonate, or thrombin. With normal or afibrinogenemic platelets, aggregation by thrombin (0.2 U/mL or higher) was not inhibited by the F(ab')2 fragments of an antibody to human fibrinogen. Deaggregation by combinations of inhibitors of platelets aggregated by 1 U/mL thrombin showed no difference between platelets from afibrinogenemic and control subjects, indicating that released fibrinogen does not make a major contribution to the stabilization of platelet aggregates formed by thrombin stimulation.


1984 ◽  
Vol 67 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Susan Young ◽  
Clower Marion ◽  
John A G Roach

Abstract A method using gel permeation and Florisil column chromatographic cleanup techniques is described for determination of residues of nonpolar organohalogen pesticides and pesticide alteration products in vegetable oils and their refinery by-products. Supplemental Florisil separation and alkali cleanup techniques are used to facilitate determinations. Residues are determined with a 63Ni electron capture gas chromatographic detection system used in conjunction with 3 different gas chromatographic columns. Residue identities are confirmed by gas chromatography-mass spectrometry. Recoveries of 7 organohalogen pesticides, ranging from 90 to 103%, were determined by the supplemental Florisil separation technique to augment previously reported recovery data determined for initial GPC and Florisil cleanup steps. Soybean, peanut, and cottonseed deodorizer distillates and crude and refined oil, as well as additional refinery by-products, were analyzed. Nine to 13 organohalogen residues ranging from 0.5 to 6.3 ppm were determined in the 2 soybean deodorizer distillate samples used to develop and test the method. Identities of residues present at ≥0.3 ppm were confirmed by gas chromatography-mass spectrometry. An intralaboratory trial of the method provided additional recovery and residue determination data as follows: Recoveries ranging from 102 to 116% were obtained for 4 pesticides added to peanut oil deodorizer distillate. Residues determined in 1 soybean deodorizer distillate sample supported previously obtained data for this sample.


Sign in / Sign up

Export Citation Format

Share Document