scholarly journals Comparison of Faba Bean Protein Ingredients Produced Using Dry Fractionation and Isoelectric Precipitation: Techno-Functional, Nutritional and Environmental Performance

Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 322 ◽  
Author(s):  
Martin Vogelsang-O’Dwyer ◽  
Iben Lykke Petersen ◽  
Marcel Skejovic Joehnke ◽  
Jens Christian Sørensen ◽  
Juergen Bez ◽  
...  

Dry fractionated faba bean protein-rich flour (FPR) produced by milling/air classification, and faba bean protein isolate (FPI) produced by acid extraction/isoelectric precipitation were compared in terms of composition, techno-functional properties, nutritional properties and environmental impacts. FPR had a lower protein content (64.1%, dry matter (DM)) compared to FPI (90.1%, DM), due to the inherent limitations of air classification. Of the two ingredients, FPR demonstrated superior functionality, including higher protein solubility (85%), compared to FPI (32%) at pH 7. Foaming capacity was higher for FPR, although foam stability was similar for both ingredients. FPR had greater gelling ability compared to FPI. The higher carbohydrate content of FPR may have contributed to this difference. An amino acid (AA) analysis revealed that both ingredients were low in sulfur-containing AAs, with FPR having a slightly higher level than FPI. The potential nutritional benefits of the aqueous process compared to the dry process used in this study were apparent in the higher in vitro protein digestibility (IVPD) and lower trypsin inhibitor activity (TIA) in FPI compared to FPR. Additionally, vicine/convicine were detected in FPR, but not in FPI. Furthermore, much lower levels of fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs) were found in FPI compared to FPR. The life cycle assessment (LCA) revealed a lower environmental impact for FPR, partly due to the extra water and energy required for aqueous processing. However, in a comparison with cow’s milk protein, both FPR and FPI were shown to have considerably lower environmental impacts.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1244
Author(s):  
Malik Adil Nawaz ◽  
Tanoj Kumar Singh ◽  
Regine Stockmann ◽  
Hema Jegasothy ◽  
Roman Buckow

The objective of this research was to develop a model faba bean drink with a high concentration of protein (>4% w/w). The protein molecular weights and frequency for both faba and soy were assessed using SDS-PAGE. Results showed similarities in the protein molecular weight of both faba and soy (mainly 11S globulin ~Glycinin and 7S globulin ~β-conglycinin). Thus, faba can be considered as a potential soy replica in plant-based milk beverages. Oil-in-water emulsions (5–8% w/w available protein) were prepared using faba bean protein concentrate (FPC), 1% sunflower oil, and 0.2% sunflower lecithin. These emulsions were used as model beverages and were further investigated for UHT processibility, stability, and physicochemical properties. The physicochemical properties of emulsions at various processing stages viz., coarse emulsification, homogenisation, and UHT, were measured. An increase in the protein concentration and thermal treatment resulted in an increased oil droplet size, coalescence and flocculation, and protein aggregation. Lower protein concentrations viz., 5–6%, showed greater negative ζ-potential, and thereby, high dispersibility through enhanced electrostatic repulsions than those of higher concentrations (7–8%). Furthermore, an increase in protein concentration and UHT treatment resulted in an increased creaming index. In total, 21 different volatile compounds were detected and quantified, representing different chemical classes, namely alcohols, aldehydes, ketones, esters, furan, and acids. These volatiles have major consequences for the overall flavour chemistry of the model beverage product. Overall, this study showed the potential for application of faba bean as a protein source in UHT-treated legume-based beverages and identified areas for further development.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 843
Author(s):  
Ferawati Ferawati ◽  
Izalin Zahari ◽  
Malin Barman ◽  
Mohammed Hefni ◽  
Cecilia Ahlström ◽  
...  

Yellow pea and faba bean are potential candidates to replace soybean-based ingredients due to their suitability for cultivation in the northern hemisphere, non-genetically modified organisms cultivation practice and low risk of allergenicity. This study examined the functionality of local yellow pea and faba bean protein isolates/concentrate as meat analogue products. The most critical factors affecting the texture properties of meat analogue were also determined. Extrusion was used to produce high-moisture meat analogues (HMMAs) from yellow pea and faba bean protein isolates/concentrates and HMMAs with fibrous layered structures was successfully produced from both imported commercial and local sources. The texture properties of the HMMA produced were mainly affected by the ash, fiber and protein content and water-holding capacity of the source protein. Three extrusion process parameters (target moisture content, extrusion temperature, screw speed), also significantly affected HMMA texture. In conclusion, functional HMMA can be produced using protein isolates derived from locally grown pulses.


LWT ◽  
2018 ◽  
Vol 93 ◽  
pp. 563-569 ◽  
Author(s):  
Manuel Felix ◽  
Alejandra Lopez-Osorio ◽  
Alberto Romero ◽  
Antonio Guerrero

1994 ◽  
Vol 8 (5) ◽  
pp. 455-468 ◽  
Author(s):  
F.A. Husband ◽  
P.J. Wilde ◽  
D.C. Clark ◽  
H.M. Rawel ◽  
G. Muschiolik

2018 ◽  
Vol 66 (40) ◽  
pp. 10394-10399 ◽  
Author(s):  
Natalia Rosa-Sibakov ◽  
Margherita Re ◽  
Anni Karsma ◽  
Arja Laitila ◽  
Emilia Nordlund

2019 ◽  
Vol 96 (4) ◽  
pp. 725-741 ◽  
Author(s):  
Ewelina Eckert ◽  
Jay Han ◽  
Kevin Swallow ◽  
Zhigang Tian ◽  
Marcela Jarpa‐Parra ◽  
...  

2020 ◽  
Vol 242 ◽  
pp. 118376 ◽  
Author(s):  
Hannele Heusala ◽  
Taija Sinkko ◽  
Nesli Sözer ◽  
Eemeli Hytönen ◽  
Lisbeth Mogensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document