scholarly journals Discretization, Bifurcation and Control for a Class of Predator–Prey Interactions

2022 ◽  
Vol 6 (1) ◽  
pp. 31
Author(s):  
Asifa Tassaddiq ◽  
Muhammad Sajjad Shabbir ◽  
Qamar Din ◽  
Humera Naaz

The present study focuses on the dynamical aspects of a discrete-time Leslie–Gower predator–prey model accompanied by a Holling type III functional response. Discretization is conducted by applying a piecewise constant argument method of differential equations. Moreover, boundedness, existence, uniqueness, and a local stability analysis of biologically feasible equilibria were investigated. By implementing the center manifold theorem and bifurcation theory, our study reveals that the given system undergoes period-doubling and Neimark–Sacker bifurcation around the interior equilibrium point. By contrast, chaotic attractors ensure chaos. To avoid these unpredictable situations, we establish a feedback-control strategy to control the chaos created under the influence of bifurcation. The fractal dimensions of the proposed model are calculated. The maximum Lyapunov exponents and phase portraits are depicted to further confirm the complexity and chaotic behavior. Finally, numerical simulations are presented to confirm the theoretical and analytical findings.

2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
P. K. Santra ◽  
G. S. Mahapatra ◽  
G. R. Phaijoo

The paper investigates the dynamical behaviors of a two-species discrete predator-prey system with Crowley–Martin functional response incorporating prey refuge proportional to prey density. The existence of equilibrium points, stability of three fixed points, period-doubling bifurcation, Neimark–Sacker bifurcation, Marottos chaos, and Control Chaos are analyzed for the discrete-time domain. The time graphs, phase portraits, and bifurcation diagrams are obtained for different parameters of the model. Numerical simulations and graphics show that the discrete model exhibits rich dynamics, which also present that the system is a chaotic and complex one. This paper attempts to present a feedback control method which can stabilize chaotic orbits at an unstable equilibrium point.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhihua Chen ◽  
Qamar Din ◽  
Muhammad Rafaqat ◽  
Umer Saeed ◽  
Muhammad Bilal Ajaz

Selective harvesting plays an important role on the dynamics of predator-prey interaction. On the other hand, the effect of predator self-limitation contributes remarkably to the stabilization of exploitative interactions. Keeping in view the selective harvesting and predator self-limitation, a discrete-time predator-prey model is discussed. Existence of fixed points and their local dynamics is explored for the proposed discrete-time model. Explicit principles of Neimark–Sacker bifurcation and period-doubling bifurcation are used for discussion related to bifurcation analysis in the discrete-time predator-prey system. The control of chaotic behavior is discussed with the help of methods related to state feedback control and parameter perturbation. At the end, some numerical examples are presented for verification and illustration of theoretical findings.


2016 ◽  
Vol 10 (01) ◽  
pp. 1750013 ◽  
Author(s):  
Boshan Chen ◽  
Jiejie Chen

First, a discrete stage-structured and harvested predator–prey model is established, which is based on a predator–prey model with Type III functional response. Then theoretical methods are used to investigate existence of equilibria and their local properties. Third, it is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of [Formula: see text], by using the normal form of discrete systems, the center manifold theorem and the bifurcation theory, as varying the model parameters in some range. In particular, the direction and the stability of the flip bifurcation and the Neimark–Sacker bifurcation are showed. Finally, numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as cascades of period-doubling bifurcation and chaotic sets. These results reveal far richer dynamics of the discrete model compared with the continuous model. The Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. In addition, we show also the stabilizing effect of the harvesting by using numerical simulations.


2021 ◽  
pp. 107754632110564
Author(s):  
Waqas Ishaque ◽  
Qamar Din ◽  
Muhammad Taj

In this paper, we study the dynamic of the predator–prey model based on mutual interference and its effects on searching efficiency. The parametric conditions, existence, and stability for trivial and boundary equilibrium points are studied. Also, it has shown that by applying the center manifold theorem and bifurcation theory, system undergoes Neimark–Sacker bifurcation across the neighborhood of a positive fixed point. Moreover, due to the bifurcation and chaos which objectively exist in a system, three chaos control strategies are designed and used. Moreover, to validate our theoretical and analytical discussions, numerical simulations are applied to show complex and chaotic behavior. Finally, theoretical discussions are validated with experimental field data.


2006 ◽  
Vol 09 (03) ◽  
pp. 209-222 ◽  
Author(s):  
SHUWEN ZHANG ◽  
DEJUN TAN ◽  
LANSUN CHEN

The effects of periodic forcing and impulsive perturbations on the predator–prey model with Beddington–DeAngelis functional response are investigated. We assume periodic variation in the intrinsic growth rate of the prey as well as periodic constant impulsive immigration of the predator. The dynamical behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing and impulsive perturbation can very easily give rise to complex dynamics, including quasi-periodic oscillating, a period-doubling cascade, chaos, a period-halving cascade, non-unique dynamics, and period windows.


2019 ◽  
Vol 13 (01) ◽  
pp. 1950093
Author(s):  
Wei Liu ◽  
Yaolin Jiang

In this paper, a difference-algebraic predator–prey model is proposed, and its complex dynamical behaviors are analyzed. The model is a discrete singular system, which is obtained by using Euler scheme to discretize a differential-algebraic predator–prey model with harvesting that we establish. Firstly, the local stability of the interior equilibrium point of proposed model is investigated on the basis of discrete dynamical system theory. Further, by applying the new normal form of difference-algebraic equations, center manifold theory and bifurcation theory, the Flip bifurcation and Neimark–Sacker bifurcation around the interior equilibrium point are studied, where the step size is treated as the variable bifurcation parameter. Lastly, with the help of Matlab software, some numerical simulations are performed not only to validate our theoretical results, but also to show the abundant dynamical behaviors, such as period-doubling bifurcations, period 2, 4, 8, and 16 orbits, invariant closed curve, and chaotic sets. In particular, the corresponding maximum Lyapunov exponents are numerically calculated to corroborate the bifurcation and chaotic behaviors.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


2018 ◽  
Vol 5 (1) ◽  
pp. 138-151 ◽  
Author(s):  
Jai Prakash Tripathi ◽  
Swati Tyagi ◽  
Syed Abbas

AbstractIn this paper, we study a predator-prey model with prey refuge and delay. We investigate the combined role of prey refuge and delay on the dynamical behaviour of the delayed system by incorporating discrete type gestation delay of predator. It is found that Hopf bifurcation occurs when the delay parameter τ crosses some critical value. In particular, it is shown that the conditions obtained for the Hopf bifurcation behaviour are sufficient but not necessary and the prey reserve is unable to stabilize the unstable interior equilibrium due to Hopf bifurcation. In particular, the direction and stability of bifurcating periodic solutions are determined by applying normal form theory and center manifold theorem for functional differential equations. Mathematically, we analyze the effect of increase or decrease of prey reserve on the equilibrium states of prey and predator species. At the end, we perform some numerical simulations to substantiate our analytical findings.


2015 ◽  
Vol 713-715 ◽  
pp. 1534-1539 ◽  
Author(s):  
Rui Ning Fan

The effect of refuge used by prey has a stabilizing impact on population dynamics and the effect of time delay has its destabilizing influences. Little attention has been paid to the combined effects of prey refuge and time delay on the dynamic consequences of the predator-prey interaction. Here, a predator-prey model with a class of functional responses was studied by using the analytical approach. The refuge is considered as protecting a constant proportion of prey and the discrete time delay is the gestation period. We evaluated both effects with regard to the local stability of the interior equilibrium point of the considered model. The results showed that the effect of prey refuge has stronger influences than that of time delay on the considered model when the time lag is smaller than the threshold. However, if the time lag is larger than the threshold, the effect of time delay has stronger influences than that of refuge used by prey.


Sign in / Sign up

Export Citation Format

Share Document