scholarly journals Unraveling the Physics of Quasar Jets: Optical Polarimetry and Implications for the X-ray Emission Process

Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 71
Author(s):  
Eric S. Perlman ◽  
Devon Clautice ◽  
Sayali Avachat ◽  
Mihai Cara ◽  
William B. Sparks ◽  
...  

Since the launch of Chandra twenty years ago, one of the greatest mysteries surrounding Quasar Jets is the production mechanism for their extremely high X-ray luminosity. Two mechanisms have been proposed. In the first view, the X-ray emission is inverse-Comptonized CMB photons. This view requires a jet that is highly relativistic (bulk Lorentz factor >20–40) on scales of hundreds of kiloparsecs, and a jet that is comparably or more powerful than the black hole’s Eddington luminosity. The second possibility is synchrotron emission from a high-energy population of electrons. This requires a much less powerful jet that does not need to be relativistically beamed, but it imposes other extreme requirements, namely the need to accelerate particles to >100 TeV energies at distances of hundreds of kiloparsecs from the active nucleus. We are exploring these questions using a suite of observations from a diverse group of telescopes, including the Hubble Space Telescope (HST), Chandra X-ray Observatory (CXO), Fermi Gamma-ray Space Telescope and various radio telescope arrays. Our results strongly favor the hypothesis that the X-ray emission is synchrotron radiation from a separate, high-energy electron population. We discuss the observations, results and new questions brought up by these surprising results. We investigate the physical processes and magnetic field structure that may help to accelerate particles to such extreme energies.

2020 ◽  
Vol 497 (1) ◽  
pp. 988-1000 ◽  
Author(s):  
D M Worrall ◽  
M Birkinshaw ◽  
H L Marshall ◽  
D A Schwartz ◽  
A Siemiginowska ◽  
...  

ABSTRACT Despite the fact that kpc-scale inverse-Compton (iC) scattering of cosmic microwave background (CMB) photons into the X-ray band is mandated, proof of detection in resolved quasar jets is often insecure. High redshift provides favourable conditions due to the increased energy density of the CMB, and it allows constraints to be placed on the radio synchrotron-emitting electron component at high energies that are otherwise inaccessible. We present new X-ray, optical, and radio results from Chandra, HST, and the VLA for the core and resolved jet in the z = 3.69 quasar PKS J1421−0643. The X-ray jet extends for about 4.5 arcsec (32 kpc projected length). The jet’s radio spectrum is abnormally steep and consistent with electrons being accelerated to a maximum Lorentz factor of about 5000. Results argue in favour of the detection of iC X-rays for modest magnetic field strength of a few nT, Doppler factor of about 4, and viewing angle of about 15°, and predict the jet to be largely invisible in most other spectral bands including the far- and mid-infrared and high-energy gamma-ray. The jet power is estimated to be about 3 × 1046 erg s−1 which is of order a tenth of the quasar bolometric power, for an electron–positron jet. The jet radiative power is only about 0.07 per cent of the jet power, with a smaller radiated power ratio if the jet contains heavy particles, so most of the jet power is available for heating the intergalactic medium.


2019 ◽  
Vol 486 (3) ◽  
pp. 3105-3117 ◽  
Author(s):  
A A Chrimes ◽  
A J Levan ◽  
E R Stanway ◽  
J D Lyman ◽  
A S Fruchter ◽  
...  

Abstract We present a study of 21 dark gamma-ray burst (GRB) host galaxies, predominantly using X-ray afterglows obtained with the Chandra X-Ray Observatory (CXO) to precisely locate the burst in deep Hubble Space Telescope (HST) imaging of the burst region. The host galaxies are well-detected in F160W in all but one case and in F606W imaging in 60 per cent of cases. We measure magnitudes and perform a morphological analysis of each galaxy. The asymmetry, concentration, and ellipticity of the dark burst hosts are compared against the host galaxies of optically bright GRBs. In agreement with other studies, we find that dark GRB hosts are redder and more luminous than the bulk of the GRB host population. The distribution of projected spatial offsets for dark GRBs from their host galaxy centroids is comparable to that of optically bright bursts. The dark GRB hosts are physically larger, more massive and redder, but are morphologically similar to the hosts of bright GRBs in terms of concentration and asymmetry. Our analysis constrains the fraction of high redshift (z > 5) GRBs in the sample to 14 per cent, implying an upper limit for the whole long-GRB population of ≤4.4 per cent. If dust is the primary cause of afterglow darkening amongst dark GRBs, the measured extinction may require a clumpy dust component in order to explain the observed offset and ellipticity distributions.


2008 ◽  
Vol 17 (09) ◽  
pp. 1475-1481 ◽  
Author(s):  
YASUNOBU UCHIYAMA

We consider the emission processes in the large-scale jets of powerful quasars based on the results obtained with the VLA, Spitzer, Hubble, and Chandra. We show that two archetypal jets, 3C 273 and PKS 1136–135, have two distinct spectral components on large-scales: (1) the low-energy (LE) synchrotron spectrum extending from radio to infrared, and (2) the high-energy (HE) component arising from optical and extending to X-rays. The X-ray emission in quasar jets is often attributed to inverse-Compton scattering of cosmic microwave background (CMB) photons by radio-emitting electrons in a highly relativistic jet. However, recent data prefer synchrotron radiation by a second distinct electron population as the origin of the HE component. We anticipate that optical polarimetry with Hubble will establish the synchrotron nature of the HE component. Gamma-ray observations with GLAST (renamed as the Fermi Gamma-ray Space Telescope), as well as future TeV observations, are expected to place important constraints on the jet models.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2020 ◽  
Vol 15 (S359) ◽  
pp. 131-135
Author(s):  
S. B. Kraemer ◽  
T. J. Turner ◽  
D. M. Crenshaw ◽  
H. R. Schmitt ◽  
M. Revalski ◽  
...  

AbstractWe have analyzed Chandra/High Energy Transmission Grating spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth-order spectral images show extended H- and He-like O and Ne, up to a distance r ˜ 200 pc from the nucleus. Using the 1st-order spectra, we measure an average line velocity ˜230 km s–1, suggesting significant outflow of X-ray gas. We generated Cloudy photoionization models to fit the 1st-order spectra; the fit required three distinct emission-line components. To estimate the total mass of ionized gas (M) and the mass outflow rates, we applied the model parameters to fit the zeroth-order emission-line profiles of Ne IX and Ne X. We determined an M ≍ 5.4 × 105Mʘ. Assuming the same kinematic profile as that for the [O III] gas, derived from our analysis of Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra, the peak X-ray mass outflow rate is approximately 1.8 Mʘ yr–1, at r ˜ 150 pc. The total mass and mass outflow rates are similar to those determined using [O III], implying that the X-ray gas is a major outflow component. However, unlike the optical outflows, the X-ray emitting mass outflow rate does not drop off at r > 100pc, which suggests that it may have a greater impact on the host galaxy.


2013 ◽  
Vol 9 (S296) ◽  
pp. 295-299
Author(s):  
Marie-Hélène Grondin ◽  
John W. Hewitt ◽  
Marianne Lemoine-Goumard ◽  
Thierry Reposeur ◽  

AbstractThe supernova remnant (SNR) Puppis A (aka G260.4-3.4) is a middle-aged supernova remnant, which displays increasing X-ray surface brightness from West to East corresponding to an increasing density of the ambient interstellar medium at the Eastern and Northern shell. The dense IR photon field and the high ambient density around the remnant make it an ideal case to study in γ-rays. Gamma-ray studies based on three years of observations with the Large Area Telescope (LAT) aboard Fermi have revealed the high energy gamma-ray emission from SNR Puppis A. The γ-ray emission from the remnant is spatially extended, and nicely matches the radio and X-ray morphologies. Its γ-ray spectrum is well described by a simple power law with an index of ~2.1, and it is among the faintest supernova remnants yet detected at GeV energies. To constrain the relativistic electron population, seven years of Wilkinson Microwave Anisotropy Probe (WMAP) data were also analyzed, and enabled to extend the radio spectrum up to 93 GHz. The results obtained in the radio and γ-ray domains are described in detail, as well as the possible origins of the high energy γ-ray emission (Bremsstrahlung, Inverse Compton scattering by electrons or decay of neutral pions produced by proton interactions).


2010 ◽  
Vol 9 (4) ◽  
pp. 265-271 ◽  
Author(s):  
W.B. Sparks ◽  
M. McGrath ◽  
K. Hand ◽  
H.C. Ford ◽  
P. Geissler ◽  
...  

AbstractEuropa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes.


2003 ◽  
Vol 214 ◽  
pp. 331-332
Author(s):  
Zhuo Li ◽  
Z. G. Dai ◽  
T. Lu

Gamma-ray bursts (GRBs) are believed to originate from ultra-relativistic fireballs, with initial Lorentz factor η ∼ 102 − 103. However very high energy photons may still suffer from γγ interaction. We show here that in a wide range of model parameters, the resulting pairs may dominate electrons associated with the fireball baryons. This may provide an explanation for the rarity of prompt optical detections. A rapid response to the GRB trigger at the IR band would detect such a strong flash.


Sign in / Sign up

Export Citation Format

Share Document