scholarly journals iVar, an Interpretation-Oriented Tool to Manage the Update and Revision of Variant Annotation and Classification

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 384
Author(s):  
Sara Castellano ◽  
Federica Cestari ◽  
Giovanni Faglioni ◽  
Elena Tenedini ◽  
Marco Marino ◽  
...  

The rapid evolution of Next Generation Sequencing in clinical settings, and the resulting challenge of variant reinterpretation given the constantly updated information, require robust data management systems and organized approaches. In this paper, we present iVar: a freely available and highly customizable tool with a user-friendly web interface. It represents a platform for the unified management of variants identified by different sequencing technologies. iVar accepts variant call format (VCF) files and text annotation files and elaborates them, optimizing data organization and avoiding redundancies. Updated annotations can be periodically re-uploaded and associated with variants as historically tracked attributes, i.e., modifications can be recorded whenever an updated value is imported, thus keeping track of all changes. Data can be visualized through variant-centered and sample-centered interfaces. A customizable search function can be exploited to periodically check if pathogenicity-related data of a variant has changed over time. Patient recontacting ensuing from variant reinterpretation is made easier by iVar through the effective identification of all patients present in the database carrying a specific variant. We tested iVar by uploading 4171 VCF files and 1463 annotation files, obtaining a database of 4166 samples and 22,569 unique variants. iVar has proven to be a useful tool with good performance in terms of collecting and managing data from a medium-throughput laboratory.

Author(s):  
Sara Castellano ◽  
Federica Cestari ◽  
Giovanni Faglioni ◽  
Elena Tenedini ◽  
Marco Marino ◽  
...  

The rapid evolution of Next Generation Sequencing in clinical settings and the resulting challenge of variants interpretation in the light of constantly updated information, requires robust data management systems and organized approaches to variant reinterpretation. In this paper, we present iVar: a freely available and highly customizable tool provided with a user-friendly web interface. It represents a platform for the unified management of variants identified by different sequencing technologies. iVar accepts, as input, VCF files and text annotation files and elaborates them, optimizing data organization and avoiding redundancies. Updated annotations can be periodically re-uploaded and associated to variants as historicize attributes. Data can be visualized through variant-centered and sample-centered interfaces. A customizable search functionality can be exploited to periodically check if pathogenicity related data of a variant are changed over time. Patient recontacting ensuing from variant reinterpretation is made easier by iVar through the effective identification of all patients present in the database and carrying a specific variant. We tested iVar by uploading 4171 VCF files and 1463 annotation files, obtaining a database of 4166 samples and 22569 unique variants. iVar has proven to be a useful tool with good performances for collecting and managing data from medium-throughput


Author(s):  
Sara Castellano ◽  
Federica Cestari ◽  
Giovanni Faglioni ◽  
Elena Tenedini ◽  
Marco Marino ◽  
...  

The rapid evolution of Next Generation Sequencing in clinical settings and the resulting challenge of variants interpretation in the light of constantly updated information, requires robust data management systems and organized approaches to variant reinterpretation. In this paper, we present iVar: a freely available and highly customizable tool provided with a user-friendly web interface. It represents a platform for the unified management of variants identified by different sequencing technologies. iVar accepts, as input, VCF files and text annotation files and elaborates them, optimizing data organization and avoiding redundancies. Updated annotations can be periodically re-uploaded and associated to variants as historicize attributes. Data can be visualized through variant-centered and sample-centered interfaces. A customizable search functionality can be exploited to periodically check if pathogenicity related data of a variant are changed over time. Patient recontacting ensuing from variant reinterpretation is made easier by iVar through the effective identification of all patients present in the database and carrying a specific variant. We tested iVar by uploading 4171 VCF files and 1463 annotation files, obtaining a database of 4166 samples and 22569 unique variants. iVar has proven to be a useful tool with good performances for collecting and managing data from medium-throughput


Author(s):  
Roman Martin ◽  
Thomas Hackl ◽  
Georges Hattab ◽  
Matthias G Fischer ◽  
Dominik Heider

Abstract Motivation The generation of high-quality assemblies, even for large eukaryotic genomes, has become a routine task for many biologists thanks to recent advances in sequencing technologies. However, the annotation of these assemblies—a crucial step toward unlocking the biology of the organism of interest—has remained a complex challenge that often requires advanced bioinformatics expertise. Results Here, we present MOSGA (Modular Open-Source Genome Annotator), a genome annotation framework for eukaryotic genomes with a user-friendly web-interface that generates and integrates annotations from various tools. The aggregated results can be analyzed with a fully integrated genome browser and are provided in a format ready for submission to NCBI. MOSGA is built on a portable, customizable and easily extendible Snakemake backend, and thus, can be tailored to a wide range of users and projects. Availability and implementation We provide MOSGA as a web service at https://mosga.mathematik.uni-marburg.de and as a docker container at registry.gitlab.com/mosga/mosga: latest. Source code can be found at https://gitlab.com/mosga/mosga Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Mineto Ota ◽  
Keishi Fujio

AbstractRecent innovation in high-throughput sequencing technologies has drastically empowered the scientific research. Consequently, now, it is possible to capture comprehensive profiles of samples at multiple levels including genome, epigenome, and transcriptome at a time. Applying these kinds of rich information to clinical settings is of great social significance. For some traits such as cardiovascular diseases, attempts to apply omics datasets in clinical practice for the prediction of the disease risk have already shown promising results, although still under way for immune-mediated diseases. Multiple studies have tried to predict treatment response in immune-mediated diseases using genomic, transcriptomic, or clinical information, showing various possible indicators. For better prediction of treatment response or disease outcome in immune-mediated diseases, combining multi-layer information together may increase the power. In addition, in order to efficiently pick up meaningful information from the massive data, high-quality annotation of genomic functions is also crucial. In this review, we discuss the achievement so far and the future direction of multi-omics approach to immune-mediated diseases.


Author(s):  
Cátia Pinho ◽  
Ana Oliveira ◽  
Daniela Oliveira ◽  
João Dinis ◽  
Alda Marques

The development of graphical user interfaces (GUIs) has been an emergent demand in the area of healthcare technologies. Specifically for respiratory healthcare there is a lack of tools to produce a complete multimedia database, where respiratory sounds and other clinical data are available in a single repository. This is essential for a complete patients' assessment and management in research/clinical settings. Therefore, this study aimed to develop a usable interface to collect and organise respiratory-related data in a single multimedia database. A GUI, named LungSounds@UA, composed by a multilayer of windows, was developed. The usability of the user-centred interface was assessed in a pilot study and in an evaluation session. The users testified the utility of the application and its great potential for research/clinical settings. However, some drawbacks were identified, such as a certain difficulty to intuitively navigate in the great amount of the available information, which will inform future developments.


Author(s):  
Zhuohang Yu ◽  
Zengrui Wu ◽  
Weihua Li ◽  
Guixia Liu ◽  
Yun Tang

Abstract Summary MetaADEDB is an online database we developed to integrate comprehensive information on adverse drug events (ADEs). The first version of MetaADEDB was released in 2013 and has been widely used by researchers. However, it has not been updated for more than seven years. Here, we reported its second version by collecting more and newer data from the U.S. FDA Adverse Event Reporting System (FAERS) and Canada Vigilance Adverse Reaction Online Database, in addition to the original three sources. The new version consists of 744 709 drug–ADE associations between 8498 drugs and 13 193 ADEs, which has an over 40% increase in drug–ADE associations compared to the previous version. Meanwhile, we developed a new and user-friendly web interface for data search and analysis. We hope that MetaADEDB 2.0 could provide a useful tool for drug safety assessment and related studies in drug discovery and development. Availability and implementation The database is freely available at: http://lmmd.ecust.edu.cn/metaadedb/. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 49 (D1) ◽  
pp. D509-D515
Author(s):  
Chuanyu Lyu ◽  
Tong Chen ◽  
Bo Qiang ◽  
Ningfeng Liu ◽  
Heyu Wang ◽  
...  

Abstract Marine organisms are expected to be an important source of inspiration for drug discovery after terrestrial plants and microorganisms. Despite the remarkable progress in the field of marine natural products (MNPs) chemistry, there are only a few open access databases dedicated to MNPs research. To meet the growing demand for mining and sharing for MNPs-related data resources, we developed CMNPD, a comprehensive marine natural products database based on manually curated data. CMNPD currently contains more than 31 000 chemical entities with various physicochemical and pharmacokinetic properties, standardized biological activity data, systematic taxonomy and geographical distribution of source organisms, and detailed literature citations. It is an integrated platform for structure dereplication (assessment of novelty) of (marine) natural products, discovery of lead compounds, data mining of structure-activity relationships and investigation of chemical ecology. Access is available through a user-friendly web interface at https://www.cmnpd.org. We are committed to providing a free data sharing platform for not only professional MNPs researchers but also the broader scientific community to facilitate drug discovery from the ocean.


Author(s):  
Jiguang Peng ◽  
Jiale Xiang ◽  
Xiangqian Jin ◽  
Junhua Meng ◽  
Nana Song ◽  
...  

The American College of Medical Genetics and Genomics, and the Association for Molecular Pathology (ACMG/AMP) have proposed a set of evidence-based guidelines to support sequence variant interpretation. The ClinGen hearing loss expert panel (HL-EP) introduced further specifications into the ACMG/AMP framework for genetic hearing loss. This study developed a tool named VIP-HL, aiming to semi-automate the HL ACMG/AMP rules. VIP-HL aggregates information from external databases to automate 13 out of 24 ACMG/AMP rules specified by HL-EP, namely PVS1, PS1, PM1, PM2, PM4, PM5, PP3, BA1, BS1, BS2, BP3, BP4, and BP7. We benchmarked VIP-HL using 50 variants where 83 rules were activated by the ClinGen HL-EP. VIP-HL concordantly activated 96% (80/83) rules, significantly higher than that of by InterVar (47%; 39/83). Of 4948 ClinVar star 2+ variants from 142 deafness-related genes, VIP-HL achieved an overall variant interpretation concordance in 88.0% (4353/4948). VIP-HL is an integrated online tool for reliable automated variant classification in hearing loss genes. It assists curators in variant interpretation and provides a platform for users to share classifications with each other. VIP-HL is available with a user-friendly web interface at http://hearing.genetics.bgi.com/.


2018 ◽  
Vol 2 ◽  
pp. 3 ◽  
Author(s):  
Heba Shaaban ◽  
David A. Westfall ◽  
Rawhi Mohammad ◽  
David Danko ◽  
Daniela Bezdan ◽  
...  

The Microbe Directory is a collective research effort to profile and annotate more than 7,500 unique microbial species from the MetaPhlAn2 database that includes bacteria, archaea, viruses, fungi, and protozoa. By collecting and summarizing data on various microbes’ characteristics, the project comprises a database that can be used downstream of large-scale metagenomic taxonomic analyses, allowing one to interpret and explore their taxonomic classifications to have a deeper understanding of the microbial ecosystem they are studying. Such characteristics include, but are not limited to: optimal pH, optimal temperature, Gram stain, biofilm-formation, spore-formation, antimicrobial resistance, and COGEM class risk rating. The database has been manually curated by trained student-researchers from Weill Cornell Medicine and CUNY—Hunter College, and its analysis remains an ongoing effort with open-source capabilities so others can contribute. Available in SQL, JSON, and CSV (i.e. Excel) formats, the Microbe Directory can be queried for the aforementioned parameters by a microorganism’s taxonomy. In addition to the raw database, The Microbe Directory has an online counterpart (https://microbe.directory/) that provides a user-friendly interface for storage, retrieval, and analysis into which other microbial database projects could be incorporated. The Microbe Directory was primarily designed to serve as a resource for researchers conducting metagenomic analyses, but its online web interface should also prove useful to any individual who wishes to learn more about any particular microbe.


Author(s):  
Lisa Langnickel ◽  
Roman Baum ◽  
Johannes Darms ◽  
Sumit Madan ◽  
Juliane Fluck

During the current COVID-19 pandemic, the rapid availability of profound information is crucial in order to derive information about diagnosis, disease trajectory, treatment or to adapt the rules of conduct in public. The increased importance of preprints for COVID-19 research initiated the design of the preprint search engine preVIEW. Conceptually, it is a lightweight semantic search engine focusing on easy inclusion of specialized COVID-19 textual collections and provides a user friendly web interface for semantic information retrieval. In order to support semantic search functionality, we integrated a text mining workflow for indexing with relevant terminologies. Currently, diseases, human genes and SARS-CoV-2 proteins are annotated, and more will be added in future. The system integrates collections from several different preprint servers that are used in the biomedical domain to publish non-peer-reviewed work, thereby enabling one central access point for the users. In addition, our service offers facet searching, export functionality and an API access. COVID-19 preVIEW is publicly available at https://preview.zbmed.de.


Sign in / Sign up

Export Citation Format

Share Document