scholarly journals Srs2 and Pif1 as Model Systems for Understanding Sf1a and Sf1b Helicase Structure and Function

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1319
Author(s):  
Aviv Meir ◽  
Eric C. Greene

Helicases are enzymes that convert the chemical energy stored in ATP into mechanical work, allowing them to move along and manipulate nucleic acids. The helicase superfamily 1 (Sf1) is one of the largest subgroups of helicases and they are required for a range of cellular activities across all domains of life. Sf1 helicases can be further subdivided into two classes called the Sf1a and Sf1b helicases, which move in opposite directions on nucleic acids. The results of this movement can range from the separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. Here, we describe the characteristics of the Sf1a helicase Srs2 and the Sf1b helicase Pif1, both from the model organism Saccharomyces cerevisiae, focusing on the roles that they play in homologous recombination, a DNA repair pathway that is necessary for maintaining genome integrity.

2019 ◽  
Vol 48 (1) ◽  
pp. 255-273 ◽  
Author(s):  
J. Brooks Crickard ◽  
Eric C. Greene

Helicases are enzymes that move, manage, and manipulate nucleic acids. They can be subdivided into six super families and are required for all aspects of nucleic acid metabolism. In general, all helicases function by converting the chemical energy stored in the bond between the gamma and beta phosphates of adenosine triphosphate into mechanical work, which results in the unidirectional movement of the helicase protein along one strand of a nucleic acid. The results of this translocation activity can range from separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. In this review, we focus on describing key helicases from the model organism Saccharomyces cerevisiae that contribute to the regulation of homologous recombination, which is an essential DNA repair pathway for fixing damaged chromosomes.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 553-562
Author(s):  
Margaret I Kanipes ◽  
John E Hill ◽  
Susan A Henry

Abstract The isolation of mutants of Schizosaccharomyces pombe defective in the synthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine is reported. These mutants are choline auxotrophs and fall into two unlinked complementation groups, cho1 and cho2. We also report the analysis of the cho1+ gene, the first structural gene encoding a phospholipid biosynthetic enzyme from S. pombe to be cloned and characterized. The cho1+ gene disruption mutant (cho1Δ) is viable if choline is supplied and resembles the cho1 mutants isolated after mutagenesis. Sequence analysis of the cho1+ gene indicates that it encodes a protein closely related to phospholipid methyltransferases from Saccharomyces cerevisiae and rat. Phospholipid methyltransferases encoded by a rat liver cDNA and the S. cerevisiae OPI3 gene are both able to complement the choline auxotrophy of the S. pombe cho1 mutants. These results suggest that both the structure and function of the phospholipid N-methyltransferases are broadly conserved among eukaryotic organisms.


Author(s):  
Ignacio Tinoco ◽  
Steven Wolk ◽  
Frances Arnold ◽  
Fareed Aboul-Ela

2018 ◽  
Vol 18 (3) ◽  
pp. 205-210
Author(s):  
Koichi Nishigaki

Abstract The short lifetime structures of nucleic acids are not well studied because of the poor recognition of their importance and the methodological difficulty. In case of proteins, which are a type of single-stranded biopolymers, the essential roles of their transient structures are well established. Therefore, the role of transient structures of nucleic acids is, naturally, of great interest. There have been multiple reports on the function-related unstable (transient) structures of single-stranded nucleotides, though not as many as at present. Recent methodological advances are now enabling us to observe structures with ultra-short lifetime (less than a nanosecond). On the other hand, the biological importance of transient structures of ribonucleicacid (RNA) is increasingly recognized because of the findings of novel functional RNAs such as microRNA. Therefore, the time has come to tackle the structure and function dynamic of RNA/deoxyribonucleic acid in relation to their transient, unstable structures. The specific properties of rapidity and diversity are hypothesized to be involved in unexplored phenomena in neuroscience.


‘Cellular structure and function’ covers the roles, structures, and functions of the main four types of macromolecules of the human body, namely proteins, lipids, carbohydrates, and nucleic acids. For these macromolecules, the roles and types of each class are discussed (for proteins this includes their roles as structural proteins and enzymes and their kinetics; for lipids, the roles and types of lipid found in the body are considered; for carbohydrates, their roles including structural and metabolic are discussed; and the structure of nucleic acids is described). Then follows a description of the organization of the cell, including the plasma membrane and its components, and the intracellular organelles. Cell growth, division, and apoptosis are covered, as are the formation of gametes, and finally the principles of how cellular functions can be modulated by pharmacological agents through receptors and signalling pathways are discussed.


Sign in / Sign up

Export Citation Format

Share Document