scholarly journals Genetic Diversity and Population Structure of Cowpea [Vigna unguiculata (L.) Walp.] Germplasm Collected from Togo Based on DArT Markers

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1451
Author(s):  
Kodjo M. Gbedevi ◽  
Ousmane Boukar ◽  
Haruki Ishikawa ◽  
Ayodeji Abe ◽  
Patrick O. Ongom ◽  
...  

Crop genetic diversity is a sine qua non for continuous progress in the development of improved varieties, hence the need for germplasm collection, conservation and characterization. Over the years, cowpea has contributed immensely to the nutrition and economic life of the people in Togo. However, the bulk of varieties grown by farmers are landraces due to the absence of any serious genetic improvement activity on cowpea in the country. In this study, the genetic diversity and population structure of 255 cowpea accessions collected from five administrative regions and the agricultural research institute of Togo were assessed using 4600 informative diversity array technology (DArT) markers. Among the regions, the polymorphic information content (PIC) ranged from 0.19 to 0.27 with a mean value of 0.25. The expected heterozygosity (He) varied from 0.22 to 0.34 with a mean value of 0.31, while the observed heterozygosity (Ho) varied from 0.03 to 0.07 with an average of 0.05. The average inbreeding coefficient (FIS) varied from 0.78 to 0.89 with a mean value of 0.83, suggesting that most of the accessions are inbred. Cluster analysis and population structure identified four groups with each comprising accessions from the six different sources. Weak to moderate differentiation was observed among the populations with a genetic differentiation index varying from 0.014 to 0.117. Variation was highest (78%) among accessions within populations and lowest between populations (7%). These results revealed a moderate level of diversity among the Togo cowpea germplasm. The findings of this study constitute a foundation for genetic improvement of cowpea in Togo.

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1643
Author(s):  
Didas Kimaro ◽  
Rob Melis ◽  
Julia Sibiya ◽  
Hussein Shimelis ◽  
Admire Shayanowako

Understanding the genetic diversity present amongst crop genotypes is an efficient utilization of germplasm for genetic improvement. The present study was aimed at evaluating genetic diversity and population structure of 48 pigeonpea genotypes from four populations collected from diverse sources. The 48 pigeonpea entries were genotyped using 33 simple sequence repeat (SSR) markers that are polymorphic to assess molecular genetic diversity and genetic relatedness. The informative marker combinations revealed a total of 155 alleles at 33 loci, with an average of 4.78 alleles detected per marker with the mean polymorphic information content (PIC) value of 0.46. Population structure analysis using model based revealed that the germplasm was grouped into two subpopulations. The analysis of molecular variance (AMOVA) revealed that 53.3% of genetic variation existed within individuals. Relatively low population differentiation was recorded amongst the test populations indicated by the mean fixation index (Fst) value of 0.032. The Tanzanian pigeonpea germplasm collection was grouped into three major clusters. The clustering pattern revealed a lack of relationship between geographic origin and genetic diversity. This study provides a foundation for the selection of parental material for genetic improvement.


Author(s):  
Workia Ahmed ◽  
Tileye Feyissa ◽  
Kassahun Tesfaye ◽  
Sumaira Farrakh

Abstract Background Date palm tree (Phoenix dactylifera L.) is a perennial monocotyledonous plant belonging to the Arecaceae family, a special plant with extraordinary nature that gives eminent contributions in agricultural sustainability and huge socio-economic value in many countries of the world including Ethiopia. Evaluation of genetic diversity across date palms at DNA level is very important for breeding and conservation. The result of this study could help to design for genetic improvement and develop germplasm introduction programmes of date palms mainly in Ethiopia. Results In this study, 124 date palm genotypes were collected, and 10 polymorphic microsatellite markers were used. Among 10 microsatellites, MPdCIR085 and MPdCIR093 loci showed the highest value of observed and expected heterozygosity, maximum number of alleles, and highest polymorphic information content values. A total of 112 number of alleles were found, and the mean number of major allele frequency was 0.26, with numbers ranging from 0.155 (MPdCIR085) to 0.374 (MPdCIR016); effective number of alleles with a mean value of 6.61, private alleles ranged from 0.0 to 0.65; observed heterozygosity ranged from 0.355 to 0.726; expected heterozygosity varied from 0.669 to 0.906, polymorphic information content with a mean value of 0.809; fixation index individuals relative to subpopulations ranged from 0.028 for locus MPdCIR032 to 0.548 for locus MPdCIR025, while subpopulations relative to total population value ranged from − 0.007 (MPdCIR070) to 0.891 (MPdCIR015). All nine accesstions, neighbour-joining clustering analysis, based on dissimilarity coefficient values were grouped into five major categories; in population STRUCTURE analysis at highest K value, three groups were formed, whereas DAPC separated date palm genotypes into eight clusters using the first two linear discriminants. Principal coordinate analysis was explained, with a 17.33% total of variation in all populations. Generally, the result of this study revealed the presence of allele variations and high heterozygosity (> 0.7) in date palm genotypes. Conclusions Microsatellites (SSR) are one of the most preferable molecular markers for the study of genetic diversity and population structure of plants. In this study, we found the presence of genetic variations of date palm genotypes in Ethiopia; therefore, these genetic variations of date palms is important for crop improvement and conservation programmes; also, it will be used as sources of information to national and international genbanks.


2021 ◽  
Author(s):  
Yao Dodzi Dagnon ◽  
Koffi Kibalou Palanga ◽  
Damigou Bammite ◽  
Ghislain Comlan AKABASSI ◽  
Koffi Tozo

Cowpea [ Vigna unguiculata (L.) Walp.] is a crop with significant agronomic and nutritional potential. I is very appreciate by local people. It is the third food habit in Togo after maize and rice. However, several accessions of cowpea cultivated in Togo are now prone to extinction, creating a risk of genetic erosion. It is therefore urgent to assess the genetic diversity of accessions in order to set up a good conservation program. To achieve this, genetic diversity and phylogenetic relationships among 70 accessions of cowpea collected in the five (5) administrative regions of Togo were assessed using Simple Sequence Repeat (SSR) molecular markers. Twenty-eight out of the thirty-two (32) primer pairs screened for polymorphism were polymorphic, and a total of 164 alleles were detected for the 28 loci with an average of 5.82 alleles per locus. Polymorphic Information Content (PIC) values ranged from 0.18 to 0.895, with an average value of 0.67. Population structure analysis using model-based revealed that the cowpea germplasm was grouped into two subpopulations. The analysis of molecular variance (AMOVA) revealed that 85% of genetic variation existed among individuals within regions. The fixation index (Fst) value, which was 0.018, was low, indicating relatively low population differentiation. The Togolese cowpea germplasm collection was grouped into four groups independently of theirs origins. This study provides a foundation for a Togolese cowpea germplasm conservation program and can serve for the selection of parental material for further studies aimed at the genetic improvement of local germplasm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Grimar Abdiel Perez ◽  
Pumipat Tongyoo ◽  
Julapark Chunwongse ◽  
Hans de Jong ◽  
Anucha Wongpraneekul ◽  
...  

AbstractThis study explored a germplasm collection consisting of 112 Luffa acutangula (ridge gourd) accessions, mainly from Thailand. A total of 2834 SNPs were used to establish population structure and underlying genetic diversity while exploring the fruit characteristics together with genetic information which would help in the selection of parental lines for a breeding program. The study found that the average polymorphism information content value of 0.288 which indicates a moderate genetic diversity for this L. acutangula germplasm. STRUCTURE analysis (ΔK at K = 6) allowed us to group the accessions into six subpopulations that corresponded well with the unrooted phylogenetic tree and principal coordinate analyses. When plotted, the STRUCTURE bars to the area of collection, we observed an admixed genotype from surrounding accessions and a geneflow confirmed by the value of FST = 0.137. AMOVA based on STRUCTURE clustering showed a low 12.83% variation between subpopulations that correspond well with the negative inbreeding coefficient value (FIS =  − 0.092) and low total fixation index (FIT = 0.057). There were distinguishing fruit shapes and length characteristics in specific accessions for each subpopulation. The genetic diversity and different fruit shapes in the L. acutangula germplasm could benefit the ridge gourd breeding programs to meet the demands and needs of consumers, farmers, and vegetable exporters such as increasing the yield of fruit by the fruit width but not by the fruit length to solve the problem of fruit breakage during exportation.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Christian Fatokun ◽  
Gezahegn Girma ◽  
Michael Abberton ◽  
Melaku Gedil ◽  
Nnanna Unachukwu ◽  
...  

2021 ◽  
Vol 58 (2) ◽  
pp. 279-286
Author(s):  
Sandhani Saikia ◽  
Pratap Jyoti Handique ◽  
Mahendra K Modi

Genetic diversity is the source of novel allelic combinations that can be efficiently utilized in any crop improvement program. To facilitate future crop improvement programs in rice, a study was designed to identify the underlying genetic variations in the Sali rice germplasms of Assam using SSR markers. The 129 SSR markers that were used in the study amplified a total of 765 fragments with an average of 5.93 alleles per locus. The Shannon's Information Index was found to be in the range from 0.533 to 1.786. The Polymorphism Information Content (PIC) fell into the range from 0.304 to 0.691 with a mean value of 0.55. The overall FST value was found to be 0.519 that indicated the presence of genetic differentiation amongst the genotypes used in the study. The Sali population was divided into two clusters. The information obtained from the present study will facilitate the genetic improvement of Sali rice cultivars.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manosh Kumar Biswas ◽  
Mita Bagchi ◽  
Ujjal Kumar Nath ◽  
Dhiman Biswas ◽  
Sathishkumar Natarajan ◽  
...  

Abstract Lily belongs to family liliaceae, which mainly propagates vegetatively. Therefore, sufficient number of polymorphic, informative, and functional molecular markers are essential for studying a wide range of genetic parameters in Lilium species. We attempted to develop, characterize and design SSR (simple sequence repeat) markers using online genetic resources for analyzing genetic diversity and population structure of Lilium species. We found di-nucleotide repeat motif were more frequent (4684) within 0.14 gb (giga bases) transcriptome than other repeats, of which was two times higher than tetra-repeat motifs. Frequency of di-(AG/CT), tri-(AGG/CTT), tetra-(AAAT), penta-(AGAGG), and hexa-(AGAGGG) repeats was 34.9%, 7.0%, 0.4%, 0.3%, and 0.2%, respectively. A total of 3607 non-redundant SSR primer pairs was designed based on the sequences of CDS, 5′-UTR and 3′-UTR region covering 34%, 14%, 23%, respectively. Among them, a sub set of primers (245 SSR) was validated using polymerase chain reaction (PCR) amplification, of which 167 primers gave expected PCR amplicon and 101 primers showed polymorphism. Each locus contained 2 to 12 alleles on average 0.82 PIC (polymorphic information content) value. A total of 87 lily accessions was subjected to genetic diversity analysis using polymorphic SSRs and found to separate into seven groups with 0.73 to 0.79 heterozygosity. Our data on large scale SSR based genetic diversity and population structure analysis may help to accelerate the breeding programs of lily through utilizing different genomes, understanding genetics and characterizing germplasm with efficient manner.


BMC Genetics ◽  
2011 ◽  
Vol 12 (1) ◽  
pp. 42 ◽  
Author(s):  
LiYi Zhang ◽  
DongCheng Liu ◽  
XiaoLi Guo ◽  
WenLong Yang ◽  
JiaZhu Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document