scholarly journals Developmental Acquisition of p53 Functions

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1675
Author(s):  
Sushil Jaiswal ◽  
Sonam Raj ◽  
Melvin DePamphilis

Remarkably, the p53 transcription factor, referred to as “the guardian of the genome”, is not essential for mammalian development. Moreover, efforts to identify p53dependent developmental events have produced contradictory conclusions. Given the importance of pluripotent stem cells as models of mammalian development, and their applications in regenerative medicine and disease, resolving these conflicts is essential. Here we attempt to reconcile disparate data into justifiable conclusions predicated on reports that p53dependent transcription is first detected in late mouse blastocysts, that p53 activity first becomes potentially lethal during gastrulation, and that apoptosis does not depend on p53. Furthermore, p53 does not regulate expression of genes required for pluripotency in embryonic stem cells (ESCs); it contributes to ESC genomic stability and differentiation. Depending on conditions, p53 accelerates initiation of apoptosis in ESCs in response to DNA damage, but cell cycle arrest as well as the rate and extent of apoptosis in ESCs are p53-independent. In embryonic fibroblasts, p53 induces cell cycle arrest to allow repair of DNA damage, and cell senescence to prevent proliferation of cells with extensive damage.

Author(s):  
Sushil K. Jaiswal ◽  
Sonam Raj ◽  
Melvin L. DePamphilis

Abstract: Remarkably, the p53 transcription factor, referred to as “the guardian of the genome”, is not essential for mammalian development. Moreover, efforts to identify p53‑dependent developmental events have produced contradictory conclusions. Given the importance of pluripotent stem cells as models of mammalian development, and their applications in regenerative medicine and disease, resolving these conflicts is essential. Here we attempt to reconcile disparate data into justifiable conclusions predicated on reports that p53‑dependent transcription is first detected in late mouse blastocysts, that p53 activity first becomes potentially lethal during gastrulation, and that apoptosis does not depend on p53. Furthermore, p53 does not regulate expression of genes required for pluripotency in embryonic stem cells (ESCs); it contributes to ESC genomic stability and differentiation. Depending on conditions, p53 accelerates initiation of apoptosis in ESCs in response to DNA damage, but cell cycle arrest as well as the rate and extent of apoptosis in ESCs are p53-independent. In embryonic fibroblasts, p53 induces cell cycle arrest to allow repair of DNA damage, and cell senescence to prevent proliferation of cells with extensive damage.


Stem Cells ◽  
2020 ◽  
Vol 38 (5) ◽  
pp. 613-623
Author(s):  
Suveg Pandey ◽  
Kelly M. Banks ◽  
Ritu Kumar ◽  
Andrew Kuo ◽  
Duancheng Wen ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3528-3528
Author(s):  
Timothy M Chlon ◽  
Elizabeth E Hoskins ◽  
Sonya Ruiz-Torres ◽  
Christopher N Mayhew ◽  
Kathryn A Wikenheiser-Brokamp ◽  
...  

Abstract As the source of all cells in the developing embryo proper, embryonic stem cells (ESC) bear the unique responsibility to prevent mutations from being propagated throughout the entire organism and the germ line. It is likely for this reason that ESC and induced pluripotent stem cells (iPSC) maintain a dramatically lower mutation frequency than cultured somatic cells. Multiple mechanisms for this enhanced genomic surveillance have been proposed, including hypersensitivity of DNA damage response signaling pathways and increased activity of error-free DNA repair pathways, such as homologous recombination. However, the effect of loss of function of DNA repair pathways in these cells remains poorly understood. The Fanconi Anemia (FA) pathway is a DNA repair pathway that is required for the repair of DNA interstrand crosslink damage and also promotes repair of DNA double-strand breaks by homologous recombination . Genetic defects in this pathway cause a disease characterized by bone marrow failure and extreme cancer incidence. Several recent studies have revealed that the FA pathway is required for efficient somatic cell reprogramming to iPSC and suggest that FA cells undergo cell death during this process. Another recent study found that the growth of FA patient-specific iPSC was attenuated with a G2/M arrest when compared to control iPSC, suggesting that these cells arrest upon failed DNA repair. In this study, we sought to determine the effects of acute loss of function of the FA pathway in iPSC through the generation of FA patient-derived iPSC with inducible complementation of the defective FA gene. Fibroblasts were cultured from skin biopsies of multiple FA patients and transduced with a lentiviral vector expressing the complementing FA gene product under DOX-inducible control. Cells were then reprogrammed to iPSC using episomal transfection. These cells formed iPSC colonies only when reprogramming was carried out in the presence of DOX, confirming that the FA pathway is required for efficient reprogramming. Once cell lines were obtained, DOX-dependent FA functionality was verified based on FANCD2 monoubiquitination and nuclear focus formation after treatment with DNA damaging agents. We then cultured the iPSC for extended periods of time in the presence and absence of DOX. Interestingly, the cultures underwent profound cell death and cell cycle arrest within 7 days of DOX-withdrawal and completely failed to expand after one passage. EdU cell cycle analysis confirmed cell cycle arrest in the G2/M phase. Furthermore, cleaved caspase 3 staining confirmed that the number of apoptotic cells increased by 3-fold in the -DOX culture. Despite these effects, cells cultured in both the presence and absence of DOX formed teratomas in nude mice, thus indicating the maintenance of full differentiation capacity in the absence of the FA pathway. In order to determine the mechanisms underlying G2/M arrest and cell death, expression of p53 and its target genes was detected by both western blot analysis and qRT-PCR. Only a slight increase in p53 activation was observed by 7 days post DOX-withdrawal. Furthermore, knockdown of p53 resulted in rescue from apoptosis to normal levels but not rescue from cell cycle arrest. Increased ATM and ATR DNA damage sensor kinase activities were also detected in –DOX cells, concominant with increased phosphorylation of the ATM-target Chk2 and reduced abundance of the G2/M checkpoint protein CDC25A. These results reveal hyperactive DNA damage responses upon FA loss which may underlie the attenuated cell cycle progression of FA-iPSC independent of p53. Remarkably, effects in this FA model system appear equivalent to those responsible for the depletion of HSC in the bone marrow of FA patients. Thus, iPSC models may be useful for future studies of the mechanisms underlying FA stem cell arrest and for the development of therapeutics that alleviate these phenotypes. Disclosures No relevant conflicts of interest to declare.


FEBS Letters ◽  
1998 ◽  
Vol 425 (3) ◽  
pp. 499-504 ◽  
Author(s):  
Sandrine Prost ◽  
Christopher O.C Bellamy ◽  
Alan R Clarke ◽  
Andrew H Wyllie ◽  
David J Harrison

Author(s):  
T. Zhao ◽  
G. Zadeh

Ionizing radiation (IR) is one of the conventional post-surgical treatments for Glioblastoma Multiforme (GBM). Mesenchymal stem cells (MSCs) constitute a subpopulation of bone marrow derived cells which are actively recruited to the site of radiation and/or tumour microenvironment (TME), both of which have important implications for neovascularization and tumor progression. The goal of this project is to investigate the functional contribution of MSCs in the TME. We postulate that Bone Marrow-MSCs promote radio-resistance in GBM via cell cycle arrest. We tested the effect of MSC on U87 glioblastoma cell line in response to IR. We found that MSC co-culture, MSC-conditioned media (MSCCM) and irradiated MSC-conditioned media (MSCIRCM) did not reduce IR-induced p53 (ser15) phosphorylation, signifying intact p53-dependent DNA damage pathway in all conditions. However, both MSCCM and MSCIRCM temporally increased phospho-Chk2, a kinase involved in ATM-dependent cascade and cell cycle arrest. This increase occurred at 24 hours and reverted to baseline levels by 48 hours. Interestingly, IR (15Gy) caused transiently heightened metabolic rate under MSC and MSC IRCM as opposed to IR-null treatment at 48 hours elevated cell proliferation. MSCCM, but not MSCIRCM, marginally reduced caspase 3/7-dependent apoptotic levels. The combination of IR and MSCCM as well as MSCIRCM first increased protein level of phospho-Chk2 at 24 hours; followed by increased metabolic rate at 48 hours; and lastly, boosted proliferation at 72 hours. This data combined proposes plausible machinery for BM-MSC mediated radio-resistance by initiating cell cycle arrest in tumour cells for DNA damage repair.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1453
Author(s):  
Haoran Wang ◽  
Jianhua Wei ◽  
Hong Jiang ◽  
Ye Zhang ◽  
Caina Jiang ◽  
...  

The use of cisplatin is severely limited by its toxic side-effects, which has spurred chemists to employ different strategies in the development of new metal-based anticancer agents. Here, three novel dehydroabietyl piperazine dithiocarbamate ruthenium (II) polypyridyl complexes (6a–6c) were synthesized as antitumor agents. Compounds 6a and 6c exhibited better in vitro antiproliferative activity against seven tumor cell lines than cisplatin, they displayed no evident resistance in the cisplatin-resistant cell line A549/DPP. Importantly, 6a effectively inhibited tumor growth in the T-24 xenograft mouse model in comparison with cisplatin. Gel electrophoresis assay indicated that DNA was the potential targets of 6a and 6c, and the upregulation of p-H2AX confirmed this result. Cell cycle arrest studies demonstrated that 6a and 6c arrested the cell cycle at G1 phase, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of cyclin E. In addition, 6a and 6c caused the apoptosis of tumor cells along with the upregulation of the expression of Bax, caspase-9, cytochrome c, intracellular Ca2+ release, reactive oxygen species (ROS) generation and the downregulation of Bcl-2. These mechanistic study results suggested that 6a and 6c exerted their antitumor activity by inducing DNA damage, and consequently causing G1 stage arrest and the induction of apoptosis.


2002 ◽  
Vol 277 (23) ◽  
pp. 21110 ◽  
Author(s):  
Damu Tang ◽  
Dongcheng Wu ◽  
Atsushi Hirao ◽  
Jill M. Lahti ◽  
Lieqi Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document